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ABSTPACT

"An autopilot for the U.S. Marine Corps’ ducted fan hovercraft is designed using
optimal control theory. Single input controllers are designed to govern the vehicle’s
roll rate and altitude rate. The gyroscopic coupling between the vehicle’s pitch and
yaw dynamics is examined and a multi-input controller is designed. A computer
program called OPTCON is developed to generate optimal feedback control gains by
solving the discrete matrix Riccati equation. This program is for use on pertable or
home IBM compatible computers. Graphic plotting of the time-varying gains and of
the system time response is available for both monitor and hardcopy outpu}.\
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the ¢me available, to ensure that the programs are free of computational and
logic errors, they cannot be considered validated. Any application of these programs
without additional verification is at the risk of the user.
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L. INTRODUCTION

THE CONTROL SYSTEM DESIGN PROCESS

Since the beginning of time, man has sought ways to control the laws of nature.
From the simple float regulator developed by the Greeks in 300 B.C. [Ref. 1: p 3], to
the amazxngly complex space shuttle of the 1980’s, control systems span the range of
mankmds efforts to govern his surroundings. The challenge for a control systems
engineer is to use his knowledge, skill, judgment, and experience to systematically
develop a solution to any of a number of different types of control problems. There is
seldom only one right answer to a controi problem. In general, there may be several
alternate solutions 1o the same problem and the final product will probably be a

A.

compromise between them. It remains the responsibility of the engineer to choose the
“best” solution that meets the performance criteria specified by the user. So, how does
the engineer know where to begin when he is given a set of performance criteria for a
system ? There is no set procedure carved in stone. There are, however, a few broad
guidelines that give the engineer a rough idea of the tasks which need to be
accomplished in his quest to design an effective control system. These milestones are
as follows :

1. Define the system. .
“Specify the desired performance of the system.
Identify the constraints under which the system must operate.

Translate the information from milestones 1, 2, and 3 into a mathematical
model that can be simulated on the computer. .

5. Use the available tools to develop a control system which satisfies the
performance specifications.

6. Evaluate the control system design using computer simulations.
Modify the design as required to batter suit the application.

8. Incorporate the control design in a prototype system to test the ability of the
system to tolerate real world non-linearities and non-ideal conditions.

9. Modify and optimize the design until a satisfactory control system is realized.
The first milestone listed above is not always as simple as it appears to be. In
fact, defining the limits of the system may possibly be the most difficult phase of the
design. If the engineer does not expend considerable effort in the definition of the

h v
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problem which he is to solve, he might end up solving the wrong problem. The
engineer needs to include enough parameters in his system to accurately model the true
system without becoming overburdened computationally. This is as much an art as it
is a science. The engineer will probably need to make simplifying assumptions and
approximations which tend to widen the gap between the performance of the model
and the performance of the real world system.

Defining the desired performance of the system may or may not be left to the
discretion of the engineer. If a strict set of specifications is handed to him, then the
engineer-has little choice but to satisfy those specifications or be able to defend his
claim that they can not be satisfied. On the other hand, there may be considerable
leeway for the engineer to make sweeping changes in the control syste:n and still satisfy
the required specifications. Several tools are available to measure the performaiice of a
~control system. The classical design engineer holds fast to such measures as the gain
margin, phase margin, root locations in the S plane or Z plane, and bandwidth, The
advent of optimal control techniques has placed emphasis on the minimization of some
cost function as a means of measuring system performance. All of these techniques
have their place in the realm of control system design and it is the mark of a successful
decigner that he can incorporate any or all of the tools when the situation dictates.

The third milestone is an important yet often overlooked element of the design
process. Constraints on the system may include any or al} of the following : '

N 1 Monetary cost
2. -Admissible control inputs
a. Saturation limits
b. Observability of the parameters required for control
3. Physical limitations
Size
Weight
Minimum and / or maximum velocities, accelerations, etc.
[nitial conditions
Final conditions .
f. Sampling rate and processor speed for digitally controlled systems
The mathematical model is the link between the real world system and the design
tools which the engineer has at his disposal. In general, most physical systems which
need tc be modelled can be represented by some set of differential equations. The

e o0 ge
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physical laws of nature lend themselves nicely to approximation by linear ordinary
differential equations with constant coefficients. Non-linearities and random processes
are also quite prevalent in many systems and the effects of these phenomenon can
greatly complicate the engineer’s effort to model a system. That is why he must have
the expertise and experience to know how to make assumptions and approximations
which simplify the problem at hand to a point where he can use the available design
tools. _
The next step is to use design tools to develop a control system which satisfies
the desired performance specifications. It is at this point that two schools of thought
begin to emerge. The classical school of thought fccuses on such design tools as the
Roat Locus Plot, Nyquist Plot, Bode Diagram, and Function Minimization. The more
daring school of thought centers its attention on the maximum principle of Pontryagin
and the method of dynamic programming developed by Beliman. The advent of digital
computers in the mid 1950's made these more powerful design tools realizable since the
amount of computation required by them was prohibitive if not impossible to do by
hand. In any event, the design engineer has a myriad. of tools from which to choose.

Once the design of the controller is accomplished, the next step is to integrate the
control system with the system model and then simulate the entire system to evaluate
its performance. A very useful method to perform this evaluation is to study the time
response of the output variables of the system. Such parameters as rise time, peak
overshoot, and settling time are typical values to be noted. The digital computer once
again is & very useful means of obtaining such information rapidly.

Even the best of control designers is not apt to hit a bullseye on his first shot.
Control system design theory does not guarantee success on every try. The method of
trial and error is one with which all control engineers are familiar. Modifications to -
the control system are inevitable.

Once the controller design is proven in simulation studies, it is-time to test it out
on a prototype or small scale model of the actual system. This phase of design can
become costly if the designer has not thoroughly tested his controller on the computer
first. In this phase of design, the non-linearities and random effects which were
ignored or approximated during the modelling phase become significant factors once
again. Conditions which were assumed to be ideal in the model now become non-ideal.
The evaluation process begins all over again as these new disturbances change the
perfcrmance of the system.

13-
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The next step is obvious. After evaluation of the controller in a real world
system, the need for further modifications is again probablc if not inevitable. Changes
must be made until a satisfactory controller has been designed which meets the desired
specifications.

B. AROD

It is the goal of this thesis to complete the first seven steps of the nine step
design process discussed in the previous secticn. The system chosen for this endeavor
is an au'bome remotely piloted vehicle (RPV) called AROD. The acronym stands for
Airborne ‘Remotely Operated Device. The United States Marine Corps iritiated work
on AROD early in 1986 and is attempting to introduce the vehicle into the operational
Fleet Marine Force during fiscal 1987. AROD is a slow, low-flying ducted fan vehicle
powered by a vertically mounted, two cycle, two cylinder gascline engine which drives
a three-bladed propeller. See Figure 1.1.

The vehicle is 38 inches tall, 32 inches in diameter, and has a nominal weight of
85 pounds. It presently has a payload capacity limited to a miniature television camera
and a canister of fiber-optic cable. The Marine Corps plans to use AROD for short
range reconnaissance and over-the-hill spy in the sky surveillance. The fiber-optic
cable provides two-way communication between the vehicle and the ground based
operator. The uplink communication will consist of control commands while the
downlink will provide real time surveillance and on-board status information.

The primary flight mode is low altitude hovering with the axis of the spinning
propeller oriented perpendicular to the surface of the earth. In order to translate
horizontally across the earth’'s surface, the entire vehicle must be tilted towards the
direction of intended mcvement. The mechanism by which AROD is tilted for such
translation consists of four control vanes located in the airflow downstream of the
propeller wash. One pair of control vanes is designated as the rudder. The other pair
is designated as the elevator and is oriented such that its axis of rotation is
perpendicular to the axis of rotation of the rudder pair. See Figure 1.2. All four fins
assume dual responsibility for aerodynamic control in that they also serve as aileroas
for AROD. The control vanes are actuated by model airplane servos. These servos
are limited to a maximum deflection of & 30¢ and a raximum angle rate of 509/sec.
A maximum translational velocity of 30 knots ( 34 mph ) in a no wind cundition is
desired. The translational velocity of AROD is proportional to the tilt angle created
by the rudder and elevator control vanes.

14
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Figure 1.1 Schematic Drawing of AROD
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Figure 1.2 AROD Contro! Vanes

Vertical flight control of AROD is accomplished through a throttle controller
which incorporates the same iype of model airplane servo used to actuate the
aerodynamic control vanes. The throttle controller increases or decreases the engine
RPM as required to raise or lower AROD vertically.

C. THE PROBLEM

AROD is interesting from the standpoint of a control system design for several
reasons. Most significant is the phenomenon of cross-coupled dynamics between the
pitch and yaw subsystems. In addition, AROD is a Muiti-Input Multi-Output system.
These topics are briefly discussed in the following sections.

16




1. Gyroscopic Coupling
AROD's propeller has a spin velocity of 7200 RPM in the hovering condition.
This creates a large angular momentum vector along the spin axis of the propeller.
Thus, AROD can be thought of as a large gvroscope with its angular momentum
vector oriented perpendicular to the surface of the earth. Consider a cvlindrical rotor

xA

Figure 1.3 Spinning Rotor Orientation

spinning about the x-axis with an angular spin velocity ®. See Figure 1.3. Let the
rotor be of mass, m, with moments of inertia I , ly » and 1, about their respective
axes. These moments are defined in the three equations below.

I = f[f 8¢y + 2% av (1.1)

I = §§f 8(x* + 2%) av o (1.2)

I = §fféx?+yhav (1.3)
17




In these equations, & is the density of the rotor and dV is an incremental volume
element of the rotor. In the case of AROD, it is assumed that the propeller is spinning
with sufficient angular velocity that its dynamics can be approximated by the dynamics
of a cylindrical disk having the same mass, m, radius, r, and thickness, h. The
moments of inertia of the propeller then reduce to the following :

[ = — | (1.4)

—

- m(3r2 + h?)

1, = (1.5)
m(3?2 + h?)
I, — (1.6)

Notice that the moments of inertia about the y-axis and z-axis are equal to each other
due to the symmetry of the problem.

The angular velocity, @ , of the rotor induces an angular momentum vector,
H,, defined by the following equation.

H =1e (1.7)
If a coupled pair of forces, F, directed parallel to the z-axis is applied to the the spin
axis of the rotor at a distance, d, from the rotor’s center of gravity, as in Figure 1.4,
then a torque, M , results. The torque is given by

M=Fxd (1.8)

If the rotor were not spinning with angular velocity, ®@ , then this applied torque would
result in rotation of the rotor about the y-axis. The angular momentum of the
spinning rotor, however, results in quite a different response to the applied torque.
According to Newton’s Second Law, an external force applied to the center of gravity
of a rigid body results in a change in the velocity of that body. A corresponding
change in the body’s momentum also results. The changes in velocity and momentum

18 -




- —  Figure 1.4 Spinning Rotor with a Force Couple Applied

are in the direction of the applied force. This law extends into the realm of angular
forces, or moments, and angular velocities. In short, an applied moment, M , results
in a change in angular momentum.

dH dl. o
M =i =X 1.9
dt dt (1.9)

Notice that the change in angular momentum is in the same direction as the applied
moment. This is the key to gyroscopic precession. By vector addition of H, and M,
it can be secn that a new angular momentum vextor, H __, results. The new angular
momentum is displaced by an angle, y, from the initial angular momentum vector, H .
This angular movement is called preccssidn and it occurs at a precession rate, I,
oriented as shown in Figure 1.5 and defined by Equation 1.10.
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Figure 1.5 Resultant Anguldr Momentum With an Applied Torque

R dW
r = ——— 1.10
it . ( )

It can be shown that H,, M, and r are always mutually perpendicular to each other
[Ref. 2: p. 335), and that these vectors are related by the expression

M=1r xH, (1.11)
The handy mnemonic for this relationship is that “spin follows torque”. In this
example, the spin vector, H__, , that results from the applied torque, M ,.is rotated in

the direction of the torque. Notice that the magnitude of the precession velocity is
directly proportional to the magnitude of the applied torque.
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In the case of designing a control system for AROD, the preceding
development is quite important. Recall that the prop:ller spins ot a naicinal velocity
of 7200 RPM. The angular momentum of this high speed rotor has significant effect
on the flight dynamics of AROD. In order to change the orientation of this angular
momentumn, as is required to accomplish translational ﬂight, a considerabie torque
must be applied. This torque is produced by the four cont:rol vanes iocated in the
propeller downwash. Note that the gyroscopic nature of ARQD introduces cross-
coupling of the pitch and yaw dynamics. For instance, when a pitching torque is
commanded about the y-axis via the elevator vanes, AROD must first und;rgo an
initial yawing motion about the z-axis. Similarly; a yaw command from the rudder
vanes results in an initial pitching motion about the y-axis. These cross-coupled
dynamics must be considered by the engineer when designing the controller for the
elevator and rudder vanes.

2. Multiple Control Loops

Another feature which makes AROD interesting for the control engineer is the
Multi-Input Multi-Output (MIMO) nature of its dynamics. There are basically four
subsystems which need to be controlled in order to make AROD fly. These
subsystems are :

1. Rollrate

2. Rate of vertical climb .

3. Pitch ang]e

4. - Yaw angle
Classical design tools such as Root Locus diagrams and Bode plots are not well suited
for MIMO system design. Instead, the usefulness of these methods is primarily limited
to Single-Input Single-Output (SISC) systems. These systems are generally represented
in terms of their S domain or Z domain transfer functions. The poles and zeros of these
transfer functions determine how the time response of the system will behave. By using
the graphical and analytic methods available through classical design theory, the
engineer can generally place the poles and zeros of his SISO centroller in such
locations as to obtain an acceptable time responsé for the system. The complex
interactions that tvpically accompany a MIMO system can become impossible to
represent in terms of standard transfer functions. Thus, classicai design methods may
become nowerless for some systems. By developing a state space representaticn of the
system, however, the interactions can be accurately modelled. Optimal control theory
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is founded on the state space representation cf control systems and, therefore, it seems

logical to pursue this theory for AROD. The basics of optimal control theory are
presented in the following chapter.
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I1. OPTIMAL CONTROL THEORY

A. FEEDBACK CONTROL
1. Why Use Feedback ?

Feedback control is familiar to engineers from all disciplines. In its simplist
form, feedback control is nothing miore than using the present condition, or “state”, of
a system to influence its condition in the future.

The advantages of state feedback control’[Ref. 1: p.97] can be summarized in
four points :

I. Assuming that controllability and observability conditicns are satisfied, the
transient time response of the system can e easily controlled and adjusted.

The sensitivity of the system to plant parameter variation is reduced.
3. Rejection of disturbance and noise signals is improved.
Steady state errors may be eliminated or reduced.

These benefits are not free. The penalty for using feedback control may
include disadvantages such as :

1. System complexity increases because additional sensors may be required to
measure the feedback states.

2. Sensors contribute to an increase in :

~a Cost
b. Size
c. Weight

d. Measurement noise
3. Closed loop gain is generally lower than open locp gain.
Despite these potential drawbacks, feedback systems are widely used in all engineering
fields. ‘

2. System Classification
Feedback provides a system with the ability to moniter and alter its
performance. As the process advances in time, the system is apprised of the changes
that occur in its states. This state information may be real time or may be delayed by
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some finite interval of time. In general, systems may. be separated into two categories
according to the nature of the signals they process. These«categories are :

1.  Continuous time.

2. Discrete time. _

An analog electrical circuit is one exampte of the first type of system. In this
case, the voltage and current signals assume values:over a.continuum of time. That is,
given any two instants in time,: the changing values. of these signals may be distinctly
measured. This is true regardiess of how closely thedswo. tihee :instants occur. Such
system$ are usually desctibed Eby:; acseries of diffsrentiali(Bquations.. The TLaplace
transform is extremely useful:iin anovmg fréquency "domain analysis and design of
continuous time systems. », ,.ems |

A nﬁcrOprqcessorzl;é*sad‘gystem is an example:of the discrete time system. The
clocked signals in thist-;ggpe of 'System are represented by a sequence of numbers.
Typically, a sequence oéisampled data. resultssfrom measuring ‘an analog signal at
specific intervals in time. The (time between measurements is referred to as the
sampling interval, or At.:The samplihg freqnency, £, is simply the inverse of At. For
an analog system with-a:Fourier transfoem:bandlimited to a maximum frequency, f__ .,
the Nyquist-frequency,£gis defined inEquation 2.1 [Ref. 3: p. 138].

£ o=2f @.1)

A general rule of thumb fbr'the design engineer [Ref. 4: p. 404] is to sample a system
such that

£, 2 10f, | (2.2)

This guideline .for selecting a sampling frequency is based on the following
considerations. &
1.  Most systems are not strictly bandlimited. The choice of a sampling frequency

greater than the Nyquist frequency compensates for contamination by higher
frequency disturbances [Ref. 5: p. 30).

2. The sampling frequency should be fast enough to avoid aliasing. This
distortion is generated during the convolution reconstruction of a time signal
from its Fourier transform [Ref. 3: pp. 135-137].
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Discrete time systems are represented by difference equatinns and the Z-transform is
the mechanistn by which these equations are analvzed. More details of the
comparisons between continuous time svstems and discrete time systems will arise

during subsequent discussion.
3. System Structure with Feedback

-

N SR~ [DYNAMIC
] . OUTPUT _
Z AMP SYSTEM
FEEDBAGCK |,
GAIN
-~ Figure 2.1 Basic Control System

The basic form for any control system is illustrated in Figure

Jd. It is the

responsibility of the design engineer to determine any or all of the items designated in
this schematic. In this section, erﬁphasis is placed on the feedback gain "black box”
shown in Figure 2.1. The two methods most commonly used in practice to determine
feedback gains are pole placement techniques and optimal control techniques. The
element of trial and error is inherent in both methods.

Pole placement techniques include analytical methods as well as the frequency
domain methods previously mentioned. These mecthods are best suited to low-order,
linear, time-invariant, SISO systems. Although these methods are extremely useful for
certain problems, no detailed explanation of these classical techniques is included in

this thesis.
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Optimal control theory provides an alternative to classical pole placement
techniques. A primary advantage of optimal control methods is that feedback gains
can be computed for a much broader range of control problems. Specifically, optimal
control provides solutions for high order, non-linear, time varying, MIMO systems.
Such systems are intractable with classical methods. In addition, optimal control
affords the designer the option to specify a performance criteria which is not linked to
such ctandard time domain criteria as rise time, percent overshoot, and settling time.
For instance, using optimal control theory, the design engineer may compute feedback
gains which result in a system that responds in minimum time to a given cothmand
input. Selection of a different performance criteria might result in a system that
responds with minimum energy expendiature, minimum fuel, or minimum deviation from
the reference command. Sound engineering judgement and a thorough understanding
of the system dynamics are prerequisites for effective application of optimal control
theory. No guarantee is made that the feedback gains obtained by optimal control
theory will result in acceptable system response. The designer should ¢valuate the
system response and modify his performance criteria in order to achieve the desired |

output.

B. SYSTEM DEFINITION
1. Continuous Time Systems

The foundation of a successful control system is an accurate model of the
th

plant _wEich is being controlled. The state space representation of a general n*" order
continuous time system is described by the following matrix state equations
X(t) = A(t) x(t) + B(t) u(t) (2.3)
Yt =Cx) + Dut)y - (2.4)
e(t) = x(t) - r(t) (2.3)
u(t) = F(t) {x(t) - r(t)} (2.6)

where the definitions in Table 1 apply to a system with £ control inputs
and m measurable outputs.
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x(t)
u(t)
.. ¥t
rt)

e(t)
A(t)
B(t)
C(t)
D(t)
F(t)

Term

Dimension

(n x 1)
(€ x 1)
(m x 1)
(m X 1)
(m x 1)
(n X n)
(n % &
(m % n)
(m % £)
(¢ X m)

TABLE 1
STATE SPACE DEFINITIONS FOR CONTINUOUS TIME SYSTEMS

Definition

State vector

Control input vector (0 < £ S n)
Output vector (0 <m S n)
Command input vector '
Error vector

Plant matrix

Control distribution matrix
Output distribution matrix
Feedforward control gain matrix
State feedback gain vector

—

equations :

x(t) = Ax(t) + Bu(t)

y(t) = x(t)

e(t) = x(t) - x(t)

u(t) = F(t) e(t)

27.

In this thesis, a linear time invariant system will be assumed. This allows the
time dependency of the process matrices,-A(t) and B(t), and the measurement matrices,
C(t) and D(t), to be eliminated. Because optimal control theory requires that all n
states be available for feedback, the output distribution matrix, C, is set equal to the
identity matrix, I. This indicates that m = n and that the state vector is completely
observable. In addition, the feedforward contrnl gain matrix, D, is assumed to be
equal to the zero matrix. These assumptions lead to the following simplified state

(2.7)

(2.8)

(2.9)

(2.10)



CONTROLLER SYSTEM
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X(t) X({t)
B J >

Figure 2.2 Continuous Time System

The realization of such a system is schematically illustrated in Figure 2.2.
2. Discrete Time Systems

Optimal control theory is applicable to the continuous time system presented
in the preceeding section. The remainder of this thesis, however, will focus on the
application of optimal control theory to sampled data systems. The motivation behind
this effort is to develop an interactive, user-friendly software package that can be
implemented on a microcomputer. The digital nature of sampled data systems make
them ideal for analysis and design with these high speed computers. The theory for
optimal control of discrete time systems is well developed and closely follows the
development for continuous time systems [Ref. 6).

As was noted earlier, many digital systems are the result of periodic sampling
of analog systems. This fact makes it necessary to mathematically connect the two
types of systems. For an analog signal that is sampled at the frequency, f,, a discrete
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signal value is measured every t = kAt seconds. In this notation, k is an integer timc
index in the range 0S kS (\\-1) where N represents the last sample period of interest.
Letting the sample period be denoted as

At =T - (2.11)

and substituting a discrete approximation for the derivative in Equation 2.7,

" XKT) ~ x((k+DHT) - x(k'lt) (2.12)
T
vields the discrete state equation :

x((k+1)T) ~ (I + AT)X(kT) + TBu(kT) (2.13)

The analytic solution for the discrete problem is given by :

x(k+1) = O®x(k) + T uk) (2.14) .
B y(k) = x(k) (2.15)
e(k) = x(k)-rk) (2.16)
u(k) = F(k)e(k) (2.17)
“where ® and I are defined as :

@ = AT | (2.18)
r= j}' At &t B (2.19)
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The vectors and matrices which describe an n'' order discrete time system
with € contral inputs and m measured outputs arc summarizec in Table 2. A graphical
realization of such a system is illustrated in Figure 2.3.

TABLE 2
STATE SPACE DEFINITIONS FOR DISCRETE TIME SYSTEMS
" Term Dimension  Definition -
x(k) (n x1) State vector
u(k) (& x 1) Control input vector (0 < € S n)
y(k) (m X 1) Output vector (0 <m S n)
r(k) (m x 1) Comrmand input vector
e(k) (m X 1) Error vector
®(k) (n X n) State transition matrix
(k) (n x 8 Discrete Control distribution matrix
C(k) (m X n) Output distribution matrix
D(k) (m x £) Feedforward control gain matrix
F(k) (¢ X m) State feedback gain vector

The computation of the discrete process matrices, ® and I, from the
continuous process matrices, A and B, is readily accomplished [Ref. S: p. 37] on a
digital computer as follows.

Define an auxillary matrix, IT as

e j:' eAt 4t (2.20)
AT? A2T3 AiT(H' 1)
= [T + + + P c——
2! 3 i+ 1)

The terms in this Taylor series expansion are computed until the result is within a
specified degree of accuracy. It behooves the programmer to set a very small iolerance
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Figure 2.3 Time Invariant Discrete Time System

on the difference between successive terms in the expansion since this calculation is the
critical link between the A and B matrices of the continuous time system and
the ® and I matrices of the discrete time system. Note that this calculation need
only be done once for a given system with a fixed sample interval, T. The link is
completed by using Equations 2.21 and 2.22.

®=1+Al0 o (2.21)

I = IIB (2.22)
The subroutine PHIDEL listed in Appendix C performs the calculations required to

solve Equations 2.20, 2.21, and 2.22. A tolerance of 10°7 is used for the allowable
error between the last term used from the Taylor expansion and the first term not used.
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3. Constraints

The system is now defined in terms of the @ and I state space matrices. The
next step in the design process is to identify any constraints under which the system
will operate. These constraints are as unique to the problem at hand as is the system
itself. Therefore, no detailed discussion on constraints is appropriate without first
defining a specific problem. This is done in Chapter III. :

C. THE PERFORMANCE MEASURE
1~ Quadratic Cost Function : . e
The central theme in discrete optimal control theory is minimization of a cost
function, J, defined in Equation 2.23.

N-1 :
J = e(N)He(N) + ¥ [e'(k)Qe(k) + u‘(k)Ru(k)] (2.23)
k=0

where

J = Scal t ti ;
R RS SO

e(N) = State vector at the terminal time
e(k) = State vector at intermediate discrete times
u(k) = Control vector at intermediate discrete times

- H = Terminal state weighting matrix
Q = State trajectory weighting matrix’
R = Scaler control weighting matrix
N = Time index at terminal time
t = Matrix transpose operator

2.- Regulators and Trackers
It is imperative to note here that the error state vector, ¢(k), in Equation 2.23
may not be the same as the system state vector, X(k), that is presented in the previous
section. The e state vector is usually formulated in one of two ways :

1. If e(k) = x(k), then the problem is a ‘regulator’ problem. The objective is to
drive the system states to the origin during the time interval (1,N).

2. Ife(k) = x(k) - KKk), then the problem is a ‘tracking’ problem. The objective is
to drive the system states to have minimum deviation from the command input,
r(k), during the time interval (1,N). o
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In order to ex:iend the regulator problem to the tracking problem, the command input
vector, r(k), must contain the same eigenvalues and structure as the x(k) state vector.
It is possible, in many problems, to structure an approximate r(k) vector so that the
use of the regulator solution is allowed. [n the case of the regulator, the control input
signal is generated as shown in Equation 2.24.

u(k) = F(k) x(k) (229) |

LIS - . —

In the case of the tracking problem, the control signal is generated from the error
signal as shown in Equation 2.25.

u(k) = F(k) {x(k) - r(k)} (2.25)

The comparison between these two types of systems is demonstrated in their block
diagram structures as shown in Figure 2.4.

3. Performance Weighting Factors
The H, Q, and R weighting matrices are the parameters by which the design
engineer shapes the solution of an optimal control problem‘to best suit the problem.
There are no magic formulas which instruct the designer on how to choose the values
of these parameters. Intuition, experience, and patience are the keys to successful
design. It is in selecting values for these performance weighting factors that the
process of trial and error enters the design process. There are, however, some
restrictions and general guidelines that partially direct the efforts of a design engineer.
First consider the restrictions. Both of the state weighting matrices, H and Q,
must satisfy all of the criteria below [Ref. 7: p. 753).
1. Dimensionis (n X n)
2. Real
3. Symmetric
4. Positive semidefinite
In addition, the designer should never allow both H and Q to be equal to the zero
matrix at the same time. The resulting cost function would be
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N-1
J =Y ul(k)Ru(k) (2.26)
k=0

It is simple to see that the cost function will be minimized by setting u(k) equal to-zero
[Ref. 7: p 755]. This would be disasterous since there would be no command signal
available to drive the system states toward the desired state. It is permissible to set
either H or Q equal to the zero matrix provided that they are never both zero
simultaneously. The (¢ % ¢) control weighting matrix, R, must be positive definite in
order to assure the existence of a finite control [Ref. 7: p. 754]. '

Although there is no requirement for H and Q to be diagonal matrices, the
usual practice is to select non-negative values for their diagonal elements and to set ali
off-diagonal elements to zero. This technique eliminates all cross product terms in the
cost function. For example, consider a second order system containing states x; and
X,. If diagonal matrices are selected for H and Q, then only the (xl)2 and ("2)2 terms
will be weighted in the cost function. There will be no consideration given to the x,x,
or X,X, cross product terms.

Assuming that neither H nor Q is the zero matrix, it is suggested that the
elements of these weighting matrices be selected so as to normalize the values of the
states which théy multiply [Ref. 6: p. 32]. For instance, suppose that x; represents the
RPM of AROD’s propeller and x, represents the angular displacement in degrees of
‘the throttle servo. State X, is expected to have a nominal vaiue of 7200 while state x,
may have a nominal value of only 10. Assume that element q,; Which multiplies (xl)2
and element q,, which multiplies (xl)2 are both set equal to one in an attempt to
weight the two states equally. In terms of the cost function, the RPM will be weighted
much heavier (approximately 7202 times heavier 1) than the throttle servo position
angle. An appropriate solution is to set q;; = ( 1/720)2 if q,y = i. Thus, each signal
is given equal consideration in the cost function.

Notice in Equation 2.23 that the terminal cost term is not included inside the
2 operator. This means that the H term is only counted one time and therefore can
contribute only once to the overall cost. The state ti'ajectory term and the control
term, however, are counted N times. If no corapensation is made for this disparity, the
cost of an error in the terminal state is likely to not have any impact on the control
solution. It seems that an additional scaiing is required on the weighting elemeunts. If
the summation in Equation 2.23 is to be made over 500 discrete time intervals, for
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instance, the normalized elements of H should be multiplied by 500 in order to weight
the terminal states on the same scale as the state trajectory and control effort terms.
Alternately, the elements of Q and R could be divided by 500. It is the relative
magnitudes, not the absofure magnitudes, of these weighting factors which shape the
control solution. '
4. Specific Types of Problems _
Optimal control theory can be used to solve any of the following types of
problems :
1. Minimal time
2. Minimal control effort
a. Minimum fuel
b. Minimum energy
3. Minimal error from a reference
a. Regulator
b. Tracking
¢. Terminal state control
Each of these problem types requires minimization of a unique cost function in order
to generate the appropriate control solution [Ref. 6: pp. 30-34]. The cost functions
which are to be explored in this thesis are listed in Table 3.

o | TABLE 3
TYPICAL COST FUNCTIONS

Goal Cost Function Additional Explanation
Regulator J, = ¥ x'(k)Qx(k)
Tracker J, = ¥ e'(k)Qe(k) e(k) = x(k) - r(k)
Terminal Control J; = e{(N)He(N) e(N) = x(N)- r(N)
Minimum Energy J, = ¥ uY(k)Ru(k) + J,
Minimum Fuel Iy = Tluk) |

All Y’ are performed over the interval 0 Sk S(N-I).
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Of course, the cost function in Equation 2.23 is a general form which embodies all of
the specific cost functions (except for minimum fitel) contained in Tabie 3. Proper
selection of H, Q, and R wili allow calculation of feedback control gains which cause

the system to meet the specified performance goal.

D. CALCULATION OF OPTIMAL FEEDBACK GAINS

The method of dynamic programming is the workhorse which permits the
calculation of optimal feedback control gains. Developed in the late 1950’s by R.E.
Bellman,. this design tool provides a closed form solution for the minimization of the
quadratic cost function for a ciscrete time linear system [Ref. 6: p. 84].

The procedure involved in calculating optimal control gains is unique in that the
computation begins with the final, or N%, discrete time interval and progresses
backwards in time to the previous interval of the system process. This procedure in
‘negative time’ is possible because the calculation of the gains do not require any
information about the state vector, X(k). The sequence of calculations continues in
negative time until a separate gain matrix is determined for every discrete sample
period in the time interval (O,N). The resulting time-dependent gain trajectory is -
usually storsd in memory so that the control signai, u(k), may be computed.

An interesting and very useful property of the gain trajectory is its tendency to
approach a constant valued matrix, F ,, under certain conditions [Ref. 4: p. 354]. This
constant matrix is referred to as the sreadv stare feedback gain matrix. The conditions
necessary for F,, to exist are :

1. The system is controllabie.
The ® and T Matrices are time invariant.
The H terminal state weighting matrix is equal to the zero matrix.
The Q trajectory state weighting matrix is constant.
The R control weighting matrix is constant.

6. The number of stages, N, of the process is large.
It is possible for the feedback gain matrix to approach F,, without satisfying the first
three conditions above. When all conditions are satisfied, howevar, a steady state gain
solution is guaranteed provided that N is large encugh. Just how large M must be in
order to allow the gain trajectory to reach steady state is determined by the slowest
time constant in the solution of the discrete matrix Riccati equation [Ref. 5: p. 259]. in
practice, trial and errer is the the most expedient method to determine how large N
must be in order to ensure a steady state gain matrix, F_,.

b
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A series of three recursive equations [Ref. 6: p. 83] is used to calculate the gain
trajectory, F(k). It is convenient to introduce a negative time discrete index, K, which
is defined as [ollows

K=N-k | (2.27)

Since k varies from (0,N-1) as forward time progresses, K varies from (1,N) as negative
time progresses. Equation 2.28 is the solution for the transpose of the optimal
(‘eedbackngain vector at cach discrete time step. This equation is ‘the solution to the
well known discrete matrix Riccati equation. Equétions 2.29 and 2.30 are auxillary
equations required to complete the calculations. The recursive matrix equations are :

F(K) = - (T'P(K-1) T + Ry (Tt P(K-1) D) (2.28)
W(K) = ® + [ F(K) (2.29)
P(K) = WY{K) P(K-1) P(K) + Q + FYK)R F(K) -~ (2.30)

with 'negative time’ initial conditions

F'(0) = 0 _ (2.31)
W) = 0 (2.32)
P(O) = H (2.33)

While somewhat difficult at first glance, Equations 2.28, 2.29, and 2.30 are ideal for
iterative solution by a digital computer. These equations are solved in the main
OPTCON program listed in Appendix B. The rcader who is not familiar with
OPTCON is encouraged to review the discussion of this program in Appendix A prior
to continuing with Chapter I11.
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III. CONTROL SYSTEM DESIGN FOR AROD

A. OVERVIEW
The purpose of this chapter is to use optimal control theory to design an

automatic flight control system for the U.S. Marine Corps’ remotely piloted AROD.
In their initial form, the equations of motion which describe AROD's dynanuc
behavior are extremely nonlinear and present a formidable challenge to the control
system designer. For this reason, the equations are first linearized about a steady state:
hover condition. The restrictions and assumptions under which the linearized
equations of motion are developed are summarized below:

1. The mass of AROD is constant with time [Ref. 8: p. 11].

2. The propeller angular velocity is constant.

3. Perturbations from steady state hover are small. This restriction requires that
AROD pitch, roll, and yaw angular displacements be limited to less
than 150 (n/12 = 0.2618 radians) [Ref. 8: p. 41].

Steady state pitch and yaw rates are zero.
[nitial side velocities are zero.

Initial bank angles are zero.

Initial angular velocities are zero [Ref. 8: p. 45].

NS s

In-order to elucidate the equations of motion, Figure 3.1 is provided for
reference. The axis system in Figure 3.1 is known as a body-fixed coordinate system.
The body-fixed axis system is thought of as being rigidly attached to the vehicle so that
any change in the: orientation of AROD with respect to the earth-fixed axis system
(X', Y’, Z') results in a corresponding change in the orientation of the body-fixed axis
system (X, Y, Z) with respect to (X', Y’', Z'). The angles ¢, 6, and y, commonly
known as the Euler angles [Ref. 8: p. 25], are measures of the roll, pitch, and yaw
angles respectively between the body-fixed (X, Y, Z) coordinate system and the earth-
fixed (X', Y’, Z') coordinate system. The angular velocities p, q, and r in Figure 3.1
correspond to the roll, pitch, and yaw rates respectively.

The automatic flight control system is logically separated into three subsystems
according to the simplified equations of motion. The three controi subsystems which
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Figure 3.1 AROD Body-Fixed Coordinate System

are hereafter designed are :

1. Roll rate chntroller.

2. Altitude rate controller.

3. Piwch angle and yaw angle controller.
Each of these controllers is designed independently from the other shbsystcms.'
Therefore, any cross-coupling which may occur across the subsystem boundaries is not
accounted for. Each of the following sections is devoted to the design of a controller
for one specific AROD subsystem. A detailed design is first presented in Section B for
the roll rate controller in order to demonstrate the iterative pature of the design
process. Section C presents the results for ihe altitude rate controller. In the interest
of brevity, only the initial trial run and the final solution for the altitude rate controller
are presented. The couplrd dynamics of AROD’s pitch and yaw is examined in greater

detail in Section D.
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B. AROD ROLL RATE CONTROLLER
1. The Roll System

The purpose for roll rate control of the AROD is to allow the remote pilot to
command a desired rotation velocity about the vehicle’s longitudinal, or x, axis. Such
movement allows the camera aboard the vehicle either to siowly scan a selected ground
sector or to terminate the rolling motion so that a target of interest can be further
studied. The nature of rermote sensing requires that the vehicle respond rapidly to a
roll rate command. When the remote pilot locates a ground target, he needs to be able
to swiftly bring the vehicle to a zero roll rate condition with negligible overshoot™ Such
movement is commanded through a twistable handgrip control located on the pilct's
console. It is assumed that this roll rate command, p_, is limited to a step input
of 1 radian/second (57.39/second). Although no time response criteria are specified by
the Marine Corps, it is assumed for the purpose of this work that the following design
specifications for roll rate are required :

1. Zero steady state error for a step input is required.
2. The two percent settling time, .‘2%1 is less than 1 second.
3. No overshoot is allowed.

The simplified equation of motion which describes AROD’s roll' rate
subsystem is given in Equation 3.1.

- p=1L,5, | (3.1)
The aileron servo dynamics are modelled in Equation 3.2 as a second order plant with
a natural frequency, w, of 2 Hz and a damping coefticient, §, of 0.707.
N . ot . w2 2
8, = -20wé, - 0’4, + oy, 3.2)
The definitions in Table 4 apply to Equations 3.1 and 3.2. In order to apply the theory
of optimal control, a suitable state space representation of the roll rate system'mus_t

first be developed. Figure 3.2 presents the state space signal flow graph selected for
this subsystem.
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Units
radians/second
sec.onds'_2 -
radians
radians/second
unitless
radians/second

volts

TABLE 4
VARIABLE DEFINITIONS FOR AROD ROLL RATE EQUATIONS OF
MOTION
Variable Definition Value
P Vehicle Roll Rate TBD
L, Ailergn Effectiveness -21.29
- Coefhcient
é il S < 300
2 Beﬁg?:%ogix%gle
é Ail S S 50
a Dkﬁlgtliogr\vfglocity °/sec
il S 0.707
S élaxcxggpmge Y)%fﬁcient
® Aileron Servo 12.57
Natural Frequency
u, Control Input TBD
to Aileron Servo

By designating the output of each integrator in Figure 3.2 to be a state, the following

third order state equations are derived :

p
%
68

o

-21.2
0
-157.9

[0001

Ua"

F{x-r}

g 0 0
| X + 0
1 -17.7Zi 157.91

(3.3)

u (3.49)

(3.5)

Assuming that a unit step roll rate is commanded, the command input vector becomes

1
Pe

r 8 -

ac

E
Lo,

42.

(3.6)
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Figure 3.2 Signal Flow Diagram for Roll Rate Control
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where the subscipt ¢ indicates a command input variable. Now that the roll rate
system and its constraints have been identified, the next step is to use the OPTCON
program to design a suitable roll rate controller.
2. Roll Rate Controller Design
a. Choosing a Sampling Frequency

In order to determine an appropriate sampling rate for the roll rate system
given in Equations 3.3 through 3.6, the bandwidth of the open loop system is first
determined. The open loop transfer function for the roll rate system is given in
Equation 3.7. ' -

P(s)  _ (157.91) (21.29)

— 3.7
U,(s) s + 17.77 s + 15791 (7

The open loop Bode diagram for this transfer function is shown in Figure 3.3, The
negative 3 dB bandwidth of the magnitude curve is approximately 12
radians per second or 2 Hz. Using the criterion discussed in Chapter 2, The Nyquist
- sampling rate, £, is 4 Hz. In order to avoid aliasing effects and to ensure that the
sampled system is a rcasonable representation of the continuous time system, it is
decided to employ a sampling frequency that is at least five times greater than f . A
- comparison of the effect of using various sampling frequencies is given in Table 5. The
cost function which is used to obtain the optimal gains for this comparison is included
in Table 5 and is hereafter referred to as the baseline cost function. The column
labelled “Number of Stages Required” in Table 5 refers to the number of discrete time
stages that must elapse before the optimal gain vector reaches its steady state valus,
F,,. Notice that the magnitude of the steady state gain vector is related to the
sampling frequency. In general, a faster sampling rate yields larger feedback gains.
Also notice that the sampling rate affects the amount of real time that is required for
the gains to reach steady state. For example, when £ is 20 Hz, it requires 1.60 seconds
for F,, to be achieved. When f; is 40 Hz, however, a total time of 2.23 seconds elapses
before F,, is achieved. These considerations are important if the control gains are to
be dynamically implemented. In the case of this design, the control implementation is
limited to steady state values of the optimal gains. The unit step time response
obtained by using steady state optimal feedback gains is observed to be nearly identical
for all three of the sampling rates listed in Table 5. Specifically, the roll rate state, Xx,,
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TABLE S

EFFECT OF SAMPLING FREQUENCY
ON ROLL RATE SYSTEM

Baseline Cost Function

Wi e e -

lin . Numb

Run ?glﬁxen%y (1)) r N ! ué? °r
(Hz) tages

equired

54|

>

Otudime

dor
OOCO!
\O(AS
oo
LA~
o &

.
= | =

5244 -0.0057 1| -0.0078 27
Q33e 00l | G0t | B85 | w0
1. -0.2124 -0.0010 | -0. 5 5126
3 100 8:%.:3 .?:3‘6;%8 09303 %:%3. Zgzi%%‘ 159

time response exhibits an overshoot of approximately 3.7% and a 2% settling time of
1.3 seconds. See Figure 3.4. This implies that any of the three sampling rates
examined is acceptable. Because it is generally considered good practice to implement
small feedback gains when possible, it is decided to employ a sampling frequency of 20
Hz for the remainder of the roll rate controller design.
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b. Methodology

At this point, four different groups of cost functions are examined. For a
given cost function group, the H and Q matrices are held constant while the control
weighting factor, R, is varied within the range (0.01, 100). Approximately 15 runs are
made for each cost function group with a different value of R inserted into the cost
function for each run. After the steady state gains are determined for a given run, they
are implemented into the control equation and a time response for the roll rate state,
X,, is obtained. The percent overshoot and 2% settling time are recorded fox each X|
time response. A summary of this information is presented for the four cost function
groups in Tables 6, 7, 8, and 9. Following each of these four tables, there appears a
graph of two time response parameters, percent overshoot and settling time, versus the
value of the control weighting factor, R.

[t is hardly necessary to include a time response graph for all of the 59
total runs examined. It is instructive, however, to compare the time responses for a
selected set of cost functions. Three runs in each of the parameter summary tables,
Tables 6 through 9, are flagged with asterisks. These flags indicate that the roll rate
time response graph for that run is included subsequent to the applicable summary
table. Keep in mind that the criteria for the roll rate step response is specified to be
such that there is no overshoot and the 2% settling time is less than one second. A
discussion of the results from the four cost function groups follows the last figure in
this series of tables and graphs.
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TABLE 6

ROLL RATE PARAMETERS FOR GROUP |

Sampling Interval T = 0.05 seconds

Run Control Steady State Percent
e¥ ht ¢ a}.ns £ Overshoot
1 3

1 0.01 C0.1727  -0.2944  -0.0892 4.03
2 0.03 0.1726 -0.2942 -0.0891 4.02
3 0.05 0.1725 -0.2940 -0.0890 4.02
4* 0.10 0.1724 -0.2936 -0.0890 - 4.00
5 0.30 0.1717 -0.2920 -0.0884 3.95
6 0.50 0.1711 -0.2904 -0.087¢ 3.89
T 1.00 0.1696 -0.2866 -0.0866 3.74
8 3.00 0.1638 -0.2728 -0.0820 3.17
9 5.00 0.1587 -0.2610 -0.0780 2.68
10 7.00  0.1541 -0.2509 -0.0744 222
11 10.00 0.1480 -0.2380 -0.0697 1.65
12**  20.00 0.1323 -0.2078 -0.0582 0.42
13 30.00 0.1209 -0.1886 -0.0504 0.00
14 - 50.00 0.1053 -0.1646 -0.0403 0.00

15 *** 100.00 0.0835 -0.1350 -0.0278 0.00

Settling
Time
(sec)
1.31
131
1.31
1.31
.31
1.31
1.30
1.30
1.29
1.24
0.87
1.01
1.17
1.47
2.05

* S ure 31.6.
b ee igure g T
b See F1gure 8.
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ROLL RATE DESIGN PARAMETERS.
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TABLE 7
ROLL RATE PARAMETERS FOR GROUP 2

A= [10§ l§ x§] Q- [é o,g o.%] -'

e

Sampling Interval T = 0.05 seconds

P e & hl 3 -
ot I A IR T g

PRI

wb g s

N

SIPIRES
p o @

R A
1 2 3 S&C)

1 001 04803 -1.2269 -0.1073 37 0.7

2 003 04786 -1.2218 -0.1068 435 079

3 005  0.4769 - -1.2168 -0.1063 433 0.79

40 0.10 04728 -1.2047 -0.1052 422 0719

5 030 04576 -1.1508 -0.1009 408  0.79

6 0.50  0.4441 -1.1202 -0.0971 388 0.79

1 100 04159 -1.0381 -0.0853 349 079
8 3.00 0.3442 -0.8374 -0.0700 212 07

9 500 03024 -0.7251 -0.0593 LIz 0.57

10 700 02737 -0.6504 -0.0522 44 G.62
1i* 1000 02435 -0.5735 -0.0450 000 0.70
12 3000  0.1596 -0.3702 -0.0258 0.00 . 116
13 5000  0.1281 -0.296% -0.0206 000 146

14 *** 100.00 0.0937 -07175 -0.0144 0.09 2.00

. 3.10.
oy e
wh igure 3.1
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TABLE 8
ROLL RATE PARAMETERS FOR GROUP 3
w-[% 3 4] @ = [} oo} o f]
0.01.
" Sampling Interval T = 0.05 seconds

Run ontrol Steady State Percent Settling

e¥ t £ Uazps £ Overshoot (sle ce

1 2 3

1 0.01 1.1983 -2.6905 -0.1332 4.53 0.48

2 0.03 1.1622 -2.6141 -0.1296 4.54 0.49

3 0.05 1.1300 -2.5460 -0.1264 4.58 0.49

4+ 0.10 1.0625 -2.4028 -0.1196 4.65 0.49

5 0.30 0.8917 -2.0389 -0.1023 4.63 0.51

6 0.50 0.7917 -1.8200 -0.0919 429 0.52

-7 1.00 0.6497 -1.5079 -0.0770 364 - 0.53

8 1.50  0.5689 -1.3280 -0.0683 287  0.54

-9 2.00 0.5144 -1.2053 .0.0623 2.33 0.53

10 3.00 0.4426 -1.0425 .0.0543 1.28 0.43

11 5.00 0.3621 -0.8576 -0.0452 0.00 0.50

12 10.00 0.2712 -0.6458 -0.0345 0.00 0.71

13 15.00 0.2273 -0.5427 .0.0292 0.00 0.87

14**  20.00 0.2001 -0.4782 -0.0258 0.00 0.97

15 30.00 0.1663 -0.3986 -0.0217 0.00 . 1.16

16 50.00 0.1316 -0.3153 -0.0172 0.00 1.46

17 *** 100.00 0.0950 -0.2277 -0.0126 0.00 2.00

* See gure 3.14.
o ERRRIE
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TABLE 9
ROLL RATE PARAMETERS FOR GROUP 4

J 100 | t g o'l‘
T

i Sampling Interval T = 0.05 seconds

‘t Run ontrc:l Steady State OPercent . Settling
R e Gains versiico e
) - f| A £ (se0)

0.01 3.1663 -5.4007 -0.1713 9.57 0.27
0.03 2.3689 -4.3357 -0.1480 8.82 0.31
0.05 2.0386 -3.8586 -0.1366 8.67 0.33
0.10 1.6396 -3.2461 -0.1209 7.37 0.36
0.30 1.1264 -2.3821 -0.0962 6.22 0.42
0.50 0.9350 -2.0316 -0.0852 5.96 0.44
1.00 0.7182 -1.6110 -0.0709 4.51 0.48
3.00 0.4613 -1.0739 -0.0506 1.33 0.41
5.00 0.3718 -0.8759 -0.0425 0.00 0.49
10**  10.05 0.2750 -0.6551 - -0.0329 . 0.00 0.72
; - 1 30.00 0.1674 -0.4020 -0.0210 0.00 1.16
12 50.00 0.1320 -0.3175 -0.0168 0.00 1.46
13 *** 100.00 0.0951 -0.2289 -0.0125 0.00 2.00

*

\DOOLIO\MAOJNV—

* See gure 3.1 g
* ) ure
b 1gure 3.20.
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¢. Resuits

(1) Group 1 Cost Functions. All \ree states are we:ghted with A value of
unity for the Greup ! cost functions. This implies that the designer is attempting (o
minimize the error in all states with cqual emphasis. Pursuit of this group of cost
functions is made in ocder to determine generai patterns of cause and effect. For
example, it is apparent in Table ¢ that the contro! weighting factor, R, significautly
affects the magritude of the steady state optimal feedback gain vecror, F,. By
mcreasmg the penalty on the control effort, the magnitudes of the feedback gams are
reduced. Thus, if the coatrol systemn is physicallv limited to some maximum value of
control effort, then the R term is the logical parameter to adjust. The percent .
overshoot and setiling time data frum Table 6 indicates that R directly affscts the time
response as well. From Figure 3.5, note that the value of R has negligible effect on the
time response parameters fo: any value of R less than unity. Refer to Figure 3.6 in
which R = C.1. As the contrcl weighting factor innieases avove unity, however, the
tune response is dramatically affected. For values of R greater than 30, the time
response exhibits no overshoot and the settling time appears to lengthen without
bound as the system becomes increasingly slow. Refer to Figure 3.8 in which
R = 100. Also notice in Fignure 3.5 that there is no cost function in Group | that
yields an acceptable time response which satisfies both of the roll rate criteria. The
cost function ir Group | which vields ¢ time response closes: to the design
specifications is run number 12 shown in Figure 3.7. Thss run is subsequently used as

. a basis for comparison of the time responses generated by the other three groups of
cost functions.

(2) Group 2 Cost Functions. Because acceptable results are not obtained
from the Group 1 cost furcticns, it is decided to place increased emphasis on the error
in the x; state while reducing the emphasis on the error in the x, and x, states. This
tactic is alowable because the maxirnuin absolute values of the x, and x; states are
significantly less than the constraints for the &, and 6 servo states listed in Table 4,
Table 7 summarizes the data for Group 2. Flgure 3.9 evidences the relationship
beiween the x; time response parameters and the control weighting factor, R. Notice
in this figure that an acceptable time response is expected for any Group 2 cost
fupction in which 10 £ R = 20. Figure 3.11 shows the X, time response for run
number 11 in which R = 10. This time response meets the required specifications for
voll zate  Note, however, tuat the gains for this run are approximately 80% higher, on
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the average, than the gains for the best run, number 12, in Group [. (n order ta
reduce the gains so that only a small control effort is demanded, there is more work yet
ta be dcne.

(3) Group 3 Cosr Functions. Making the penalty on the X, error
state 10 times greater than the penalty on the x, and X, error states in the Group 2
cost functions appeurs to be a reasonable mechanism for obtaining an adequate time
response. In an effort to reduce the magaitude of the contrnl eifort, the ratios of
hy/Rey hy/hsy Q) /qq; aRd qp/d5; are increased to 100 for the Group 3 cost
functions. Table 8 and Figure 3.13 present the data for this group. The time réspenses
obtained for this grcup are very simular to those obtained for Groups 1 and 2. Notice
in Figure 3.13 that the overshoot is zero for all cases in which R 2 5. In addition,
the settling time is less than une second when R S 2C. The stcady state gains for run
number 14 averzge oaly 42% greater than F for run number 12 in Group 1. Thus the
hypothesis tested in the Group 3 cost functions is validated.

(4) Group 4 Cost Functions. The cost functions in Group 4 penalize errors
oniy in the X, state and the control effort. That all other elements of H and Q are zero
implies that nu penalty is assessed against deviaticns in the x, and x, states. Table 9
and Figure 3.17 present the data for this group. Run number 10 is deemed to be the

~most acceptable time response and is shown in Figure 3.19. While this design satisfies
the design criteria, note that the steady state contrcl gains average 93% greater than
the most acceptable run in Group 1. This is the greatest increase in control gains that 1
is observed. Also notice that the percent overshoot curve in Figure 3.17 increases |
upwards of 9%. This is much greater than the maximam overshoot of 4.65% observed
in Groups 1, 2, and 3. [For these two reasons, it is determined that the cost functions
tested in Group 4 do not need to be turther pursued.

(5) Summary. Figures 3.21 and 3.22 summarize the inforfnation contained
in Tables 6, 7, 8, and 9. It is interesting to note in Figure 3.21 that the first tiree
groups of cost functions yieid suprisingly similar curves for the percent overshoot of
the roll rate system. That the Group 4 cost functions produce a much more erratic
curve is attributed to the fact that nc weight is placed on the X, or x; states in this
group. The roll rate settling times in Figure 3.22 exhibit similar patteras for all four
groups of cost functions. Note that in all cases there appears to be a minimum settling
time possible when 2 S R 5 10. For values of R > 10, the large emphasis on control
effort produces small steady state gains which in turn yield a s'ow System.
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d. The Final Design
Based on the time response specifications and on the desire to design a
control system which implements minimal steady state gains, it is decided that
run number 14 in Group 3 is the best solution for a roll rate controller. The:time
response for this set of parameters appears in Figure 3.185.

C. AROD ALTITUDE RATE CONTROLLER
1. The Altitude Rate System
~Because the primary flight mode for AROD is low altitude hover; it -is
important that there be a reliable control system to maintain the vehicle’s vertical
position relative to the earth’s surface. The throttle on AROD’s two cycle engine
provides the mechanism for altitude rate control. Table 10 defines the terms which are
involved in the altitude rate equations of motion.

TABLE 10
VARIABLE DEFINITIONS FOR AROD ALTITUDE RATE EQUATIONS
OF MOTION
Variable Definition Value ~ Units
t'1 Vehicle Altitude Rate TBD feet/second
- -G, ust to. RPM 0.0865 ft/secondszlrad
ynaxm oefficient
8, hange in TBD RPM
gme Speed
T, gine La 0.5 seconds
une Cons ant | -
K, Engme Scale . 837.8 rad/sec/rad
) ottle Servo < 300 radians
o Eh'hecueoneAngle 2
S, B a%%fogeve ocity S SOe/sec  radians/second
g ottle Servo__ . 0.707 unitless -
amping Coefficient
()} ottle Servo 12.57 radians/second
atural requcncy
u, % rol Inp TBD volts
ottle Scrvo
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By commanding a desired altitude rate, t.ac. the pilot sets in motion the following
sequence of events :

1. A throttle servo control signal, u, is generated within the controller.

2. The throttle servo position is adjusted.

3. The actuator position commands a specific engine speed.

4. A changein engme RPM causes a change in the vehicle altitude rate.
The rate of change, h of the vehicle’s altitude rate, h is proportional to the change in
engine RPM as shown in Equation 3.8.

—
L

h=C 8 (3.8)

where the dynamic constant, C,, is experimentally determined in wind tunnel tests.
The engine is modelled as a first order lag system according to Equation 3.9.

8, = (1/t)8, + (K /1) 38, (3.9)

The throttle servo is modelled as a second order plant in Equation 3.10.

5, = -2Lw3, - 028, + oy (3.10)

The signal flow graph for this system is shown in Figure 3.23. The following state
space equations are used to design the controller for altitude rate :

> o
h
;
x=| (3.11)
g.
A
0 0085 0 0 0
0 -2 16755 0O 0
X = x + u (3.12)
0 0 0 1 0 t
0 0 -15791 -17.77 157.91
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u = Fix-r _ (3.13)

I a unit step is commanded for the altitude rate, then the command input vector
hecomes

(3.19)

OO O

2. Altitude Rate Controller Design

The system given in Equations 3.12 and 3.14 is entered into the OPTCON
program and a controller is designed according to a procedure similar to that explained
for the roll rate controller. As before, a sampling rate of 20 Hz is used for all runs.
Only two runs are hereafter presented because the lessons learned during the design of
the roll rate controller apply equally as well to the design procedure for the altitude
rate controller. The performance specifications for this control system are designated
to be as follows :

1. Zero steady state error for a step input is required.
2. The two percent settling time, tyo, , is less than 5 seconds.
3. No ovearshoot is allowed.

- -The first run is made using a baseline cost function. The results obtained for
this run appear in Table 11. Notice that an incredibly large number >f stages are
required in order for F,  to be achigved using this cost function. If the gains were to be
implemented dynamically at 20 Hz, more than 38 seconds would be required before the
steady state gains are available. This clearly is.not desirable since the settling time
must be less than five seconds. The unit step time response using steady state gains
from this first run is shown in Figure 3.24. Even after 20 seconds, the desired- altitude
rate is not yet achieved. The cost function used to generate this solution iv deemed to
be unsatisfactory and a better solution is sought.

The final run for the altitude rate controller is surmmarized in Table 12. The
cost function for this run places 100 times more emphasis on errors in the x, state than
on errors in the X, and x, states. The altitude rate time response shown in Figure 3.25
exhibits acceptable performance characteristics. By choosing the cost function wisely,
it becoines possible to design a satisfactory controller for this system.
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TABLE 11

INITIAL ALTITUDE RATE PARAMETERS

Cost Function

1 0 0 0] 1 0 0 0]
O 1 0 O ¢ 1 0 O . -
R = - R = |
0O ¢ 1 O Q 0O 6.1 O
_9 0 6 1 4 L_0 0 0 l-
Sfeacci;y State Number Percent ettling
ains taoes Overshoot (sxerg;a
fi ) f f4 ec%uired
-0.0544 -0.0461 -6.2776 -0.1948 763 0.00 > 20.0
TABLE 12
—_ FINAL ALTITUDE RATE PARAMETERS
Cost Function
' - - oy
FIOO 0O 0 0 1 0 0 C
H = 0O 1 0 o Q 0 .0l 0 0 R =1
0O 0 1 O 0 0 .01 0
L 0O 0 0 1 LO 0 0 .01 .
Steady St Numb t ttlin
e Nuggber PSR, S
tages sec)
fy fa fy fa equired
-0.3485 -0.0312 -4.5999 -0.1569 128 0.00 4.65
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~D.

AROD PITCH ANGLE AND YAW AN

1. The Pitch and Yaw System

Gyroscopic coupling between the pitch and yaw dynamics of AROD creates
an interesting control problem. Refer to Table 13 for an explanation of the terms

involved in the pitch and yaw equations which follow.

GLE CONTROLLER

Variable

£ Meo 2 A @ 0

-t

> Z 0

one

=

TABLE 13
~- VARIABLE DEFINITIONS FOR AROD PITCH AND YAW

EQUATIONS OF MOTION

Definition

Vehicle Pitch Rate
Velicle Pitch Angle

Pitch to Yaw
Gyroscopic Coupling

Ele\ tor Effectiveness
1c1ent

levator Servo
eflection Angle

levator Servo
Beﬂecnon Velomty

E}rol Inp _
evator ex'vo
Vehxcle Yaw Rate .
Vehicle Yaw Angle

éaw to Pj tc%
yroscopic Coupling

Rudder Effectiveness
Coeflicient

Bu&der Servo
ection Angle

udder. Servo
B 8ecnon Velocity

B\ trol Input

udder
B evator/
amping

Elevator,
atural

ervo

dd r Servo
1cient

udaer Servo
requcLcy

Value

TBD
TBD
-6.78
-14.51

S 30e

S 500/sec
TBD
TBD
TBD

6.75
-16.68

S 300

S 509/sec
TBD
0.707 -
12.57

Units
radians/second
radians
seconds”]
seconds"2
radians
radians/second
volts

radians/second

radians
-1

-2

seconds
se.onds
radians
radians/second
volts

unitless

radians/second

—_—




The pitch and yaw equations of motion are given in Equations 3.15 through 3.18.

q=Cr+ M3, | (3.1"5)
9= fqat -. (3.16)
r=Cgq+ N3 (3.17)
v=frd {3.18)

Note that crosscoupling between the pitch and yaw equations enters via the two
gyroscopic coupling terms, Cq and C. The values listed in Table 13 for these two
coefficients are based on an assumed constant propeller velocity of 7200 RPM.

As before, che elevator and rudder control vane servos are modelied as second
order systems according to Equations 3.19 and 3.20.

(X4 [ ]
3, = -2{0d, - 038, + wiy, (3.19)
[ X ] L)
8, = -0, - 0%, + wly, (3.20)

A coupled eighth order system results from Equations 3.15 through 3.20. The signal
flow diagrarn which represents this MIMO system is giver: in Figure 3.2¢.
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Defining the eight states to be :

X -[9 q d, 5e\v rd ;‘r] ‘ (3.21)

the state space egnation for the pitch and yuw coupled system is defined as

X = Ax + Eu O (3.22)
whére
i : -
0 -l 0 ¢c 0 o0 0 0
0 ¢ .43t 0 0 6725 O 0
0 0 0 i ¢ 0 ¢ ¢
A 0 0 -15791 17770 O 0 0 (3.23)
0 o0 0 0 0 -1 0 0 h
0 -678 0 9 0 0 1668 0
0 0 0 O 0 0 0 1
0 0 0 0O o0 0 -15791 .17.77 i
r -
0 0
- 0 0
0 0
B = i5791 O (3.24)
0 0 -
0 0
0 0
| 0 157.91

and the multi-input control vector is

n = ° = F (3.25)

mimo {X - 7}
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2. Pitch Angle and Yzw Angle Controller Design
a. Methodology
Notice in Equation 3.25 that the control input, u, is a (2 X 1) vector. Up
to this point in the AROD control design, the control input has been limited to a
scalar signal. The multi-input control that results from gyroscopic coupling between
pitch and yaw requires special attention. Consider the following points :-

1. The optimal feedback gain matrix, F, is determined from the solution of the
discrete matnv Riccati equatxon This solution requires that the inverse of the
term {F'* P(K-1) I’ + R} in Equation 2.28 be determined. - i - .

2. The cost function for a SISO system requires that the control weighting factor,
R, be a scalar.

3. The cost function for an n® order MIMO system with € control inputs requires
that R be an (€ x ) matrix.

Thus, for a SISO system, the solution for F is greatly simplified because the term in
Equation 2.28 is a scalar quantity. For a MIMO system, however, a matrix inversion
routine is required in order to solve for the optimal gains. Although computationally
possible, it is decided for the purpose of this work that no mtrix inversion routine is
to be included in the current version of OPTCON. This implies that the ability of the
OPTCON program to solve for optimal feedback gains is necessarily limited to SISO
systems. This limitation is reasonable since a multitude of control problems can be
reduced to single input systems. In the case of AROD, however, gyroscopic coupling
is a permanent feature of the pitch and yaw dynamics. Thus, a MIMO system is
inevitable. The four step tactic used to design a control system for this non-trivial
problem is as follows :

1. First assume that the gyroscopic coupling terms, C_ and C, are zero so that the
coupled eighth order system reduces to two independent fourth order systems.

2. Use OPTCON to solve for the optimal feedback gains for the two mdependent
systems.

3. Implement the steady state gains so obtained for the fourth order uncoupled
systems into a simulation model for the eighth order coupled system.

4. Experiment with various combinations and modifications to the (2 X 8)
feedback matrix, F,.. ., until a satisfactory time response is obtained for the
pitch angle and yaw angle of the coupled system.

Note that the design procedure listed above doe: 2ot r»viv__inv the most direct method
to design a MIMO controlier using optimal contr.' theory. Rather, this method is an
attempt to solve a compiex problem using a tool that is designed to solve simpler




problems. For this reason, the results may not necessarily be expccted to meet the
same high standards required of the two previous control designs. The target
performance specifications for the pitch and yaw control system are stated to be :

1. Zero steady state error for a step input is required.

2. The two percent settling time, LI is less than 2 seconds.

3. Less than 10% overshioot is allowed.

(1) Decoupling the System Equations. The decoupling procedure results in
two fourth order systems. The uncoupled pitch angle state space equations are .

)
o= | (3.26)
60
se
: 0 -1 0 0 0
. 0 0 -14.51 0 0
X9 ™= 0 0 0 { xg + o u, (3.27)
0 0 -15791 -17.77 157.91
y, = F, {xg-rg} (3.28)

If a unit step is commanded for the pitch angle, then the pitch command input vector
becomes

= | s - (3.29)

SO O -
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The uncoupled yaw angle state space equations are :

v
r
Xy = |s (3.30)
%
L- r
[0 -1 0 0 0
-~ . 0 0 -1668 0 . + 0 . o @3
v 0 0 0 1 ¥ 0 r '
K 0 -157.91 .17.77 157.91
u = F {x‘v-rw) (3.32)

If a unit step is commanded for the yaw angle, then the yaw command input vector
becomes

Ve
by

Vgl T

re

(3.33)

OO O

‘The similarity between the dynamics of the uncoupled pitch and yaw systems is
advantageous. For example, it is found that the elevator and rudder control gains, F,
and F,, which are generated by OPTCON have identical steady state values. For this
reason, only one set of steady state gains, F,,, needs to be gencrated for each cost
function. The individuai elements of F,, are hereafter referred to as f|, f, f;, and f.

(2) Solving for the Uncoupled Controller. The solution for F,  for the two
fourth order systems is straightforward and follows the procedure established carlier in
this chapter. Table 14 summarizes the data from the initial run. A unit step time
response for the pitch or yaw angle controller implementing steady state gains from
Table 14 is shown in Figure 3.27. Table 15 contains the data for the final run. The
time response for this last controller appears in Figure 3.28. The steady state gains
listed in Table 15 serve as the foundation upen which the coupled controller is
subsequently designed.
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TABLE 14
INITIAL UNCOUPLED PITCH OR YAW PARAMETERS

Cost Function

1 0 0 0] 1 0 0 0]
O 1 0 0 0O 1 0 O
T - ) o= l -
H O 0 1 0 Q 0 0.1 O R
0O 0 o l_ LO 0 O 1_
N ttli
SteaddraState turx}ber P%rec!%tlxltoot %%g )emg
ages (s
£ fa f5 fa equired
-0.1704  0.2417 -0.2490 -0.0858 96 0.00 4.15
TABLE 15
__.  FINAL UNCOUPLED PITCH OR YAW PARAMETERS
Cost Function
100 0 o0 0] 1 0 -0 0]
0 1 0 0 0 .0l 0 0
H= - R =350
0 0 1 0 Q 0 0 .01 0
L 0 0 0 l‘ LO 0 0 .Ol-
St tat N ttlm
e il
| fl f2 f3 f4 iequu'e
-0.3961 0.2808 -0.4158 -0.0259 58 3.98 2.50
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(3) The Coupled Feedback Matrix. In ovder to implement the SISO
feedback gain vectors, F, and F, into the coupled MIMO state equations, the (2 X 8)

feedback matrix, F , is formed as shown in Equation 3.34.

mimo

f 6 f  f Oy 0O O, O
F . = ] 339
Oa O O O f B G f4 |

* - _

—

The !.'.lij elements of F_,  represent those feedback elements which are not specifically
generated by OPTCON. The success of the final control system is contingent upon
proper selection of values for these elements of F_, . For the purpose of the
following discussion, the reader is encouraged to refer to the signal flow graph shown
in Figure 3.26.

(4) Analysis. There are numerous ways to select the eight unspecified
feedback gains in Equation 3.34. The seven schemes examined during the course of
this design are summarized in Table 16. The first two columns in Table 16 identify the
controller structure used to generate the elevator and rudder control signals, u, and u,.
The third column refers the reader to the appropriate figure containing the pitch or
yaw angle time response for that particular set of parameters. The last two columns
summarize the time response data for each controller design. At the bottom of
Table 16 are listed the exact numerical values for the controller gains.

b. Results .

(1) Controlier Number One. The feedback matrix, F ., in this first
design assumes that the four states of the yaw equations have no influence on the pitch
control input, ug. Similarly, the four states of the pitch equation have no influence on
the yaw control input, Uy As expected, due to the known coupling that exists
between the pitch and yaw dynamics of the vehicle, the time response in Figure 3.29
exhibits unsatisfactory performance. ‘

(2) Controller Number Two. For this design, the pitch angle state, x,,
influences the yaw control input, Uys while the yaw angle state, x,, contributes to the
pitch control input, ug. From the time response in Figure 3.30, it is apparent that this
design is not satisfactory.
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TABLE 16
PITCH/YAW CONTROLLER DESIGN SCHEMES

F Ti P t  Settlin
Design mimo Reglsm :nse ngggfx%ot imt;g
Number Organization anure (sec)
1 fjf H 5 fg 0 0 0 0 . 329 34.3 18.9
0 0 0 0 f; £ f3 fy
2 fi H 5 B ff 0 0 0 3.30 45.1 -N/A

3 ff 6 £ f4 £ £ 0 0 331 NA  NA

4 ff 6 f3 £ f; § 0 0 332 215 185

5 ff 6 3 6 ff b 0 0 333 000 1.8

6 f B f f4 f; £ 0 0 334 000 NA

7 6 6 f5 f4 0 f, 0 0 335 225 857

f; = -0.3961
f, =  0.2808
fo = 02954
f; = -0.4158
f4 = -0.0259
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Figure 3.30 Pitch / Yaw Angle Time Response for Controller Number 2
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Figure 3.32  Pitch / Yaw Angle Time Response for Controller Number 4
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(3) Controller Number Three. Because the gyroscopic coupling between
the pitch and yaw equations is directly related to the pitch rate, Xx,, and the yaw
rate, X, it is decided to include these two states in the makeup of the yaw control and
pitch control respectively. This seems like a logical design tactic at first but the
resulting time response in Figure 3.31 proves otherwise. This design is clearly unstable.

(4) Controller Number Four. Notice in the coupled system signal flow
diagram in Figure 3.26 that the coupling coefficients, Cq and C, are nearly equal in
magnitude but opposite in sign. This realization causes the designer to hypothesize that
the sign of O,, in Fimo Should be reversed from the value previously used in
controller design number 3. As shown in the time response of Figure 3.32, this
technique yields promising results. Although a steady state error of 2.15% exists, there
is merit in pursuing this design further.

(5) Controller Number Five. By finetuning the value substituted into O,,
in F ;.. the time response for pitch angle or yaw angle is made to satisfy the desired
performance criteria. The time response in Figure 3.33 exhibits no steady state error,
zero overshoot, and a settling time, tyo,, of slightly less than two seconds. This
controller design, then, is compietely satisfactory.

(6) Controller Number Six. For this design, all eight states are allowed to
influence both ug and Uy The time response so obtained is shown in Figure 3.34.
Even' though the steady state angle is only 75% of the commanded value, this
controller design appears to be potentially useful. By tuning the gains iteratively, it is
believed that zero steady state error is achievable with this design.

(7) Controller Number Seven. This final design is a modification to
controller number 3. In this case, only the pitch rare and yaw rate contribute to the
crosscoupled control signals. This design effort results in unsatisfactory performance
as shown in Figure 3.35.

¢. The Final Design

Controller number § is selected as the best design for a pitch/yaw angle
controller, The time response for this design appears in Figure 3.33. Note that this
design is based on feedback gains generated by OPTCON but that a modification to f,
is required in order to obtain the final design. Thus, the controller is not optimal, by
formal definition, even though optimal control theory provides the foundation for its
development.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
The lessons learned during the course of this work are as follows :

1. The cost function weighting parameters, H, Q, and R, play vital roles in
determining the magnitude of the steady state optimal feedback gain matrix,

F,. These control gains, in turn, significantly affect the time response-of the
controlled system. .

2. There is no magic formula to determine proper values for the weighting factors.
A reasonable starting point is to use the baseline cost function in which all
diagonal elements of H, Q, and R are assigned the value of unity and all off-

diagonal elements are zero.

3. The process of trial and error is prerequisite to the successful design of an
optimal control system. Only through an iterative procedure does the engineer
establish the true nature of the problem at hand.

4. There are obvious trends to be aware of. These include :

a. The sampling frequency, f,, must be fast enough to avoid aliasing effects.
As predicted, the use of a sampling frequency that is five to ten times faster
than the Nyquist frequency seems to be adequate.

b. As the selected sampling frequency increases, the optimal gains generated
also tend to increase in magnitude.

The control weighting factor, R, for a SISO system can be used as a
parameter to systematically alter the time response of the system. As the
relative weight on the control effort increases, the steady state gains tend to
decrease in magnitude. This generally produces a slow system that exhibits
little or no overshoot. On the other hand, if the value of R is decreased,
the steady state gains can become so large that a very fast and highly
oscillatory system results.

5. The controller design for a MIMO system is significantly more involved than
the design for a SISO system. If the engineer can logically and accurately
decouple the MIMO system into multiple SISO systems, then the design effort
becomes much easier. As shown in the pitch and yaw controller for AROD,
this method is feasible.

o

B. RECOMMENDATIONS FOR FURTHER WORK
The following areas present valid opportunities for useful expansion of this
work :

1. A parameter identification procedure which aids the design engineer in
determining or estimating the A, B, @, and I' plant matrices is needed. The use
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of a Fast Fourier Transform (FFT) algorithm is one possible solution to this
requirement. Such a program could be used in conjunction with, but not
necessarily integrated into, the existing OPTCON package.

2. The OPTCON program is limited in that it does not generate optimal feedback
gains for a MIMO system. A matrix inversion routine is needed so that the
discrete matrix Riccati solution can be determined for any (n X £) B or @
matrix.

3. The theory of optimal control assumes availability of all states for feedback.
The design process must account for the fact that all states are not always
measured. In the case of AROD, the servo position and rate states are not
dvailable for feedback. This means that an observer must be designed ifi order
to provide the missing state information.

4. The three control systems which are herein designed must be evaluated on the
actual vehicle. Although computer simulations provide a wealth of insight, the
proof of a good design rests in the ability of the system to function in the
outside world.
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APPENDIX A
THE OPTCON PROGRAM

1. OVERVIEW

The purpose of this appendix is to describe in detail the OPTCON computer
program which was developed in support of this thesis. OPTCON derives its name
from OPTimal CONtrol. A previous edition of OPTCON by Professor H.A. Titus of
the Naval Postgraduate School provided the starting point for the work that follows.
The original OPTCON program allowed the user to input a state space system either in
the continuous time domain or in the discrete time domain. Using matrix calculations
to solve Equations 2.28, 2.29, and 2.30, this first version of OPTCON generated a table
of feedback gains and immediately terminated execution. The motivation for
improving the original OPTCON is fourfold.

I.  The design process is an iterative technique. The OPTCON program needs to
be flexible enough to allow minor changes to be made to specific parameters
without the requirement to re-initialize all of the cost function and system
values.

2. The gain trajectory table is not a convenient means by which to analyze the
solution to an optimali control problem. A graph of the feédback gains verses
time provides better insight.

3. A time response of the state space is needed in order to allow the designer to
_quickly evaluate the performance of the system.

4. The program should be user friendly. The original OPTCON demanded that
the user flawlessly enter the correct response to every question on the firss
attempt. Woe be it to the user who accidentally types a letter in response to a
question that requires a numerical answer. The program aborts and any effort
that was spent in entering information is wasted. The frustration factor for
such an unfriendly program is likely to leave the program sitting on the shelf
with nobody to use it. '

With these points in mind, the OPTCON program is rewritten to provide an
interactive, menu driven, user-friendly, optimal control design tool that capitalizes on
the graphical capabilities of modern microcomputers. The program is written in
MICROSOFT Fortran and is listed in Appendices B, C, and D. Appendix B contains
the driver program, MAIN. Appendix C contains the majority of the subroutines
which are called by MAIN. Appendix D contains the plotting subroutine, GRAPH,
which makes use of the PLOT88 graphics software package.
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In order to use OPTCON to its full potential, the user needs access to the
following :
1. A microcomputer capable of executing MICROSOFT Fortran based programs.

During the development of OPTCON, an IBM AT computer configured with
640 kbyte RAM and Intel’s 80287 math co-processor was used.

2. Fortran, PLOTS88, and Math libraries.

3. A monochrome or color graphics monitor.

4. An Epson or LaserJet printer.
Figure A.l is provided to give the user a broad overview of the basic program flow of
OPTCON. The blocks outlined by solid lines represent program segments that must be
performed during the initial execution of OPTCON. The blocks outlined by dashed
lines represent program segments that are optional. The numbers that appear to the
left of each block are referred to during in Section 2.d of this appendix.

The remainder of this appendix illustrates the solution to a simple example
problem using the OPTCON program. The intent here is not to focus on the specific
example problem or on its solution but, rather, to focus on the capabilities and use of
OPTCON.

2. AN EXAMPLE PROBLEM
a. The Second Order Integrator
Consider the continuous time system shown in Figure A.2. The state space
equations for this second order plant are derived by defining the output of each
integrator to be a state. Using Equations 2.7 through 2.10 as a basis, the state
equations become : ' '

. _[o 1 Jo1 u A
x(t) 0 0 x(v) q u(t) 1)

1 0] | :
y(v) -E) ! x(1) (A2)
u(t) = fl(xl -1) + fz(xz- 1) (A.3)
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Figure A.1 OPTCON Program Flow Diagram

104 -

d THNT GV, B¥g )

U I VU vy



Figure A.2 Second Order Integrator Signal Flow Diagram

If the system is sampled every T seconds, Equation 2.20 yields :

T T2 :
n -l:o T ] (A4)

and Equations 2.21 and 2.22 yield

oo T] As)

p

T2/2
r=|. ] (A.6)

10§ -

W A 3 £ L2 L A At A £ 2 i B WL 4 MR A4 0 Mk M e 8 e

o e e _— ——— - A




The preceeding calculations are done simply to allow verification of the PHIDEL
subroutine in Appendix C. This subroutine converts an A and B continuous system to
a ® and I' discrete system. For instance, assume that the system is sampled at
f, = 100 Hertz. This means that T = 0.01. Equations A.5 and A.6 become

-
0= 0.01] A
0 1 |
' [ = '00005] _ T A8
.01

for the discrete time representation of the second order integrator.
Before proceeding with the OPTCON program, the user is urged to verify that
the system is controllable and observable.

b. Controllability and Reachability

According to Astrom, a system is controllable [Ref. 5: p. 104] only if "it is
possible to find a control sequence such that the origin can be reached from any initial
state in finite time.” Thus, controllability is a necessary condition for the regulator
problem. A similar property called reachability is required for the tracking problem. A
system is reachable [Ref. 5: p. 104] only if “it is possible to find a control sequence
such that an arbitrary state can be reached from any initial state in finite time.”

- —For continuous time systems, the properties of controllability and reachability
coincide. That is, either a continuous time system is both controllable and reachable
or it is both uncontrollable and unreachable. For a discrete time system, however,
controllability does not guarantee reachability. Reachability of a discrete time system
does guarantee controliability. The reachability of a discrete system is important
because the engineer should not spend a lot of time designing a controller that is
physically impossible to implement.

A simple test is performed to check the reachability of a discrete system. The
(n X nb) reachability matrix, W, for an n® order discrete time system with € control
inputs is defined as follows :

W =|T or or .. q><n°l)r:| (A9)

106

e - . . . . . .
o ee e W hle Ryl b g L o o i e on . o a mE . 4w A M- BE iy S A i BB



S R SRR R R« TR T T TR TN e TR v R R TR RN TN ¥ e B R | e A R R e B T e B ERE TR

If the reachability matrix is of rank n, then the system is reachable. In the case of the
example problem

W = T22 T2 | (A.10)
r 0 T '

Taking the determinant of W_ and setting the resuit equal to zero, the necessary
condition for reachability is found to be that T = 0. Since an infinite sarnpling
frequency is impossible to achieve, the system is reachable and it is- reasonable to
continue with the problem. '
c. Observability

In order to take full advantage of the optimal gain schedule, F(k), it is
necessary that all of the states be observable. According to Vanlandingham
[Ref. 4: p. 308], a discrete time system is completely observable if it is possible to
determine the initial state, x(0), of the system based on knowledge of the control input,
u(k), and the output, y(k), over a finite number of time intervals. The test for
observability closely follows the test for reachability. First, define the (mn X n)
observability matrix, W , as

P -y
C
co
w, = | co® | (A.11)
C(p(n-l)
- -

If the rank of W_ is n, then the system is observable. This implies that all of the
statés of the systern are available for state feedback. If the system is not completely
observable, then one or more of its states is not measureable. Either the system must
operate without the unobserved states in the feedback path, or an observer must be
designed to estimate the unobserved states. In the example problem, the observability
matrix is '

(A.12)

-]
— ._i — O
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This observability matrix is of rank 2 and the system is completely observable. Notice
that if the output distribution matrix is

c=[1 o] | (A.13)

so that only X, is observed, the observability matrix becomes

1 0 |
_ LA I S @A

C = :o 1] (A.15)
w =[0 ! A.16
=l (A16)

and the system is not observable regardless of the sampling frequency. A state
observer is needed to give an estimate of the x; state.

d. Solution Using OPTCON

__This section is an introductory guide to OPTCON. The second order
integrator problem is used to acquaint the user with the commands, features, and
limitations of the program. The messages presented in this section are referred to as
“screens” and are surrounded by numbered boxes. Neither the boxes nor the numbers
by which they are referenced are actual features of the OPTCON program. They are
simply used as devices to make the following discussion more understandable.
Messages whicn are genefated by OFTCON appear in standard print. Any responses
which represent keyboard entry by the user are shown in iralic print. If the response is
to be y for "yes” or n for “no”, then either uppercase or lowercase letters are acceptable.
If the response is to be an integer entry, as in the menu sclections, the subprogram
COMPARE is called to verify that tie user has entered a valid integer. If the response
is out of range of the acceptable values, or if the response is not an integer, then the
program repeats the message until a valid response is entered by the user.
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1. Starting the Program
The user enters OPTCON by typing opicon on the command line. The
following heading appears

Screen 1

OPTCON minimizes the following cost function:
" mMIN ( X'UN) # H % X(N) + Sum( X'(K) # Q # X(K) ¢« U'tk) # R % UltkJ})! T
The cutput of the program is the feedbuck gein metrix, F transpose, (F'),

which, when multiplied by the State Veotor (X),
vields a scalar ocontrol.(U).

The following recursive squations were derived using dynemic programming,
starting at the terminal time (N) and working backwerds: ’

(1) F'(K) = ~(DEL*¥P(K~-1)%PHI)/(DEL '%P(K~1)*DEL + R) F'(0)=0
(2) PSItk) = PHI + DEL™F'(K) PSI(0)=0
(3) P(K) = PSI'(KMP(K=-1)#PSI(K) ¢+ Q + F'(K)uR¥F(K) P(O)=H

2. Entering Initial Information
The first entry required is a problem name. - This name is used to identify
the output file called OPTFILE which contains all matrices, gain trajectories, and time
response trajectories for each run that the user requests during the problem session.

Screen 2

First enter the problem identification { NOT ¢o exceed 20 cherscters ).

PROBLEM ID........5econd order example

Next, the user selects the type of printer that is connected to the operating
system. If graph hardcopies are not to be requested during the course of the problem
session. then the response to this question has no -impact on the operation of
OPTCON. If graph hardcopies are to be requested, however, then the answer to this
question sets a flag that allows data to be properly formatted for the printer that is
being used. Unpredictable results are expected if the user attempts to get graph
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hardcopies from a printer that is not selected. In this example, the LaserJet printer is
to be selected.

Screen 3
Select the type of printer that you are using
{ Answer lor 2)

1) EPSON or THINKJET
2) LASERJET

,_MR“......-...Z . . -

Now the user enters the order, n, of the system. The maximum order
which OPTCON can accept is eight due to the limitation of 64 kbytes per segment in
the IBM AT microcomputer. The practice problem reqixires that a 2 be entered here.

Screen 4

Enter the ORDER of the system (wp to 8). 2

3. Entering the Cost Function . .
Next, the number of discrete time stages, N, is entered. . This number is
limited to 1000 due to the maximum dimension size of the arrays in OPTCON. The
user should be aware of the relationship :

t = NAt- - (A.18)

- where

t = final time of the process

N = pumber of stages over which the Y, in Equation 2.23
18 to be performed.

At = sampling interval

In the example, let At = 0.01 seconds and t. = 10 seconds. This requires N = 1000.
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Screen §

Enter the NUMBER of TIMZ INTERVALS (N) over which the cost funotion
is to be minimized. (MUST NOT exceed 1000) 1000

At this point, the weighting elements of the cost function are.to be entered.
Assuming that the user wants to initially create a baseline solution for the problem, a
reasonable starting point is to let ail diagonal weighting factors assume a value of
unity. The routine to enter the cost function begins with Screen 6.

Screen 6
Doss cost funaotion (J) include the State TRAJECTORY over all stages 7
( Answer 15250r 3 )
1) YES...Set @ ecuml to the IDENTITY Matrix .
2) VYES...Each diagoral elemant of @ will be entered seperately.
3) NO....Set @ equml to the ZERO Matrix .

Selecting option | results in the Q matrix being echoed in Screen 7. The
program then advances directly to Screen 11.

Screen 7
The states are weighted equmlly for the TRAJECTORY over all stages.
The @ Matrix

1.0000 .0000
.0000 1.0000

- Selecting option 2 in response to Screen 6 allows the user to enter values
for the diagonal elements of the Q matrix. All off-diagonal elements are automatically
set equal to zero. For the sample problem, assume that the user wants q;, = 2.4 and
q,, = 5. After entering the value for q,,, the user is prompted to enter the value for
q,,- Screen 8 results.
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Screen 8

O Enter the elements of the @ metrix.

N (State weighting matrix for TRAJECTORY over all stages)

ALY =7 2.4
~R22)x? § : -

After the user enters all diagonal elements, the matrix is echoed in Screen 9.

OPTCON then advances to Screen 11.
R Screen 9
,.i The @ Metrix
2.4000 .0000
‘ .0000 5.0000
iy
1"“1
‘r“'?‘\
e -—
!f‘j;‘:l .
= Selecting option 3 in response to Screen 6 scts all elements of the Q matrix
)' equal to zero. Screens 10 and 11 follow.

O Screen 10

The state TRAJECTORY is not included in your cost fumotion.

The Q Matrix
.0000 .0000
.0000 .0000
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Screen 11 involves a loop which allows the user to change any or all of the

elements in the matrix that is currently being processed. This loop is subsequently
referred to in this discussion as “the modify routine.”

1)
2)
N

Do you want to change any slament of the matrix?

Screen 11

YES...a SINGLE elament.
YES...the ENTIRE Matrix.
NO

Option 1 produces Screen 12 which allows the user to change a single
element by identifying the row and column of the element to be changed. The row and
column entries /must be integers separated by a comma. Assume that the user wants to
change q,, so that it equals 3.

Screen 12

~

Whieh elemant of the Matrix do you want to Changs ?

If I is the ROW and J is the COLUMN,....enter I,J 2,2

The user is then prompted to enter the new value for the element that is to
be changed. Screen 13 applies.

Screen 13

Q) s 73
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If the user entered this situation directly from Screen 7 then the
result is Screen 14,

Screen 14

Tha @ Metrix

1.0000 .0000
.0600 3.0000

Any other changen? (Answer y or n) . -

If the answer to Screen 14 is y, then OPTCON returns to Screen 12 and
allows changes to be made to individual elements of the matrix. Once the user is
satisfied that that the Q matrix is correct, a n is entered in response to Screen 14. At
this point, OPTCON is ready to accept information relating to the H matrix.
Screen 15 is next.

Screen 15

Does cost function (J) include TERMINAL States ?
( Answer 1,2,0r 3 )

1) YES...Set H ecquel to the IDENTITY Matrix .
. 2) YES...EBach disgoral element of H will be entered separately.
3) NO....Set H equel to the ZERO Matrix .

- ANSHER. . cvvececnns

The program operation at this point is identical to the operation illustrated
in Screens 6 through 14. The only difference now is that all of the matrix information
appliés to the H matrix. Assume that the user has set h;; = § and h,, = IS
Screen 16 results.

Screen 16

The H Metrix

5.0000 .0000
.0000 15.0000

Any other changes? (Answer y or n)
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Since this is the desired H matrix, a n is entered and the program advances
to the section in which the user is asked to enter the value for R. Assume the desired
value is to be 15.7. Screens 17 and 18 result.

Screen 17
Enter the value of the scalar R
(Contreol irput weighting factor)
Ru 2 15.7 -
Screen 18
The scaler R = 18.7
My changas to R ? (Answer y or n)

The program echoes the value entered and asks if there are any changes. If
there are changes to be made, a y response returns the user to Screen 17. A n response -
in Screen 18 indicates that the cost function, J, is now defined completely and Block 1
of Figure A.1 is complete. The program advances to Block 2 of Figure A.1

The user must now indicate if the problem to be solved is in the continuous
time domain or in the discrete time domain. Screen 19 applies.

Screen 19

If you vant to read in A and B matrices for » CONTINUOUS TIME system

....-.-.-.o.....u.u.an....o-n.o---..........-.--!ﬂf‘f‘ 0

If you want to enter PHI and DEL matrices for a DISCRETE TIME system,

0!!l'cO'OQnooocoloicl..ot.ll‘.t.ln.on-n.tnl.cn.-‘qo-!nt.r 1

mn---oo’o--o‘uco

The sample problem is of the continuous type and a 0 is the appropriate
response to Screen 19. Screen 20 follows.
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Screen 20

You will enter the A and B matrices.
siisesecle this correct ¥

If a y response is entered in Screen 20, then the program advances to
Screen 22. Otherwise, the message in Screen 21 appears.

Screen 21

You will enter the PHI and DEL matrices.
seesessessds this correct ?

The program toggles between Screens 20 and 21 until the user enters y to
one of these two options. Assuming that the continuous system is selected, the next
section of the program allows the user to enter the A and B system matrices and the
sampling interval, T.

4. Entering the Continuous Time System Parameters

The elements of the A matrix are sequentially entered as shown

in Screen 22.

Screen 22

Enter the slements of the plant metrix--A.

All,1) =7 0
All,2) =2 ]
A(2,1) =7 0
AL2,2) =7 0

Screen 23 echoes the A matrix and affords the user an opportunity to make
any changes. The modify routine is entered unless the user responds to Screen 23 with
a 3. In the case shown, all entries are correct and a 3 is appropriate.
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Screen 23

The A Metrix (Plant Matrix)

.0000  1.0000
.0000 .0000

Do you want to changs any slement of the metrix?
1) VYES...s SINGLE element.
2) YES...the ENTIRE Matrix.
3) NO

.Mhn-..n......s

The elements of the B matrix are sequentially entered as shown
in Screen 24.

Screen 24

Enter the eloments of the distribution metrix--B.

B(1,1) =70
Bll,1) s 7 1

Screen 25 echoes the B matrix and once again allows the user to enter the
modify routine if necessary.

Screen 25

The B Matrix (Distribution Matrix)

.00CO
1.0000

Do you went to chenge sny elemant of the matrix?
1) YES...a SINGLE element.
2) VYES...the ENTIRE Metrix.
3) NO

Mn.l'.'.'.'...3

Since no changes are needed, the program now prompts the user to enter
the sampling interval, T. The correct answer for the sample problem is entered
in Screen 26.

117



Screen 26

Enter the SAMPLE INTERVAL.....DT = ? 0.01

As usual, the response is echoed and the user is allowed to ‘make changes
until the correct value is entered. Screen 27 applies. '

L3

Screen 27

The SAMPLE INTERVAL OT = ,0100
Any changes to the SAMPLE INTERVAL 7 (Answer yornrj n

5. The Optimal Feedback Gains Calculated

The program now has all of the information necessary to calculate the
optimal gain schedule. The first step that OPTCON must perform is to convert
the A and B matrices to the corresponding @ and I' matrices. The subroutine
PHIDEL in Appendix B performs this conversion. The resulting ® and I' matrices are
not displayed on the monitor. These two matrices are, however, recorded in the
OPTFILE listing for the user’s convenience. If a discrete time system is initially
selected in Screens 19 and 20, then the PHIDEL subroutine is bypassed. In either
case, the gain schedule is now calculated using Equations 2.28, 2.29, and 2.30. This
completes Block 3 of Figure A.1. As block 4 of Figure A.l is entered, the user may
choose to view the gain schedule in tabular form. Screen 28 applies.

Screen 28

Do you want to see the gain schedule table on the screen 7
(Arawar y or n) y

Since the user wishes to view the gain schedule table on the monitor, a y is
entered in Screen 28. The user should remember two points before choosing to list the
gain schedule on the screen :

1. The gain schedule is automatically entered into OPTFILE regardless of the
user’s response in Screen 28. If the user wants to record the exact values of the
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gains, this output file may be examined later using the BROWSE, COPY,
EDIT, PRINT, or TYPE commands in DOS.

2. A total of N lines of data are listed on the moniter when tabular output is
requested in Screen 28. If N is on the order of several hundred or more, the
design procedure is likely to lose momentum due to the lengthy delay involved
in sending such a large array to the monitor.

In order to illustrate the form of the data generated, Screen 29 lists a
portion of the gain schedule table. Only the first ten time intervals are listed here for
brevity. The actual sample problem lists a table with 1000 rows.

Y
Screen 29
NEG REAL
TIME  TIME

STEP INDEX F'(1) F'(2)

1 1000 .0000 -.0100
2 999 =-.0002 -.0200
3 998 =.000¢ -.0300
4 97 -.0008 -.0400
5 996 -.0012 ~-.0500
6 995 -.0018 -.0600
4 99%% -.002¢ -.0700
8 993 -.0032 -,0800
9 992 ~.0040 -.09%00
10 991 -.0050 ~-.1000

Block 4 of Figure A.l is now complete and Block § is initiated. The next
option available to the user is to have OPTCON generate graphs of the optimal gain
trajectories. If graphs are not desired, the user may answer n in response to Screen 30
and the program advances to Screen 32. If plots of the gain trajectories are desired,
then a y response is required in Screen 30,

Screen 30

Do you want to see the geins plotted 7
(Answer y orn) y
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At this point, the program calls subroutine GRAPH. An internal flag is set
so that the gain trajectory plots are sent to the monitor. A separate plot is generated
for each gain trajectory. Thus, for an n® order system, there are n separate gain plots
produced. As each graph is generated on the screen, a pause is inserted so that the
user may conveniently examine each one. Striking any key removeS the current graph
from the monitor and Screen 31 follows.

Screen 31
" Do you want a hardoopy of this plot 7 ( Answer yorn ) y

If a n is entered in Screen 31, then the program begins to generate the next
gain trajectory plot for monitor output. By answering y in Screen 31, the user will
automatically be provided with a hardcopy of the gain trajectory. A single hardcopy
graph requires approximately 120 seconds on the Epson printer and approximately 90
seconds on the Laserjet printer. Because of the superior quality of the graphs available
from the later, all graphs contained in this thesis are generated on the Laserjet printer.
As soon as the hardcopy is complete, OPTCON begins to generate the next gain
trajectory plot for monitor output. It is important to note that the gain trajectories are
plotted against the real time discrete index, k. This means that the first gains calculated
are those on the rightmost edge of the plot while the first gains implemented are those
on the leftmost edge of the plot. Thus, the term “steady state” as it applies to optimal
feedback-gains refers to the zero-slope property of the /eft side of the gain trajectory
plot. The two gain trajectory plots for the exampie problem are shown in Figures A.3a
and A.3b. When all n gain plots have been displayed on the monitor and/or have been
printed as hardcopies, the program continues with Screen 32.

Screen 32
Do you want to chenge the NUMBER OF STAGES ?
(Angwer yorn) n

IF the user is not satisfied with the initial choice of N, then a new value
may be entered at this time by answering y in Screen 32, OPTCON presents Screen 5
for this purpose and subsequently returns to the sequence beginning with Screen 28.
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The most likely reason for the user to take advantage of the option in
Screen 32 is that the gain trajectories do not reach steady state values in the allotted
number of time intervals. By increasing N, the user may be able to force the gains to
reach steady state. Since the gain trajectories in Figures A.3a and A.3b demonstrate
steady state properties, there is no need to change N in Screen 32.
6. The Time Response
Block 6 in Figure A.l involves calculation of the time response of the
system based on the optimal gains computed in Block 3. The first option available to
the user in this section is the phase plane graph of x| verses x,. Screens 33 through 36
represent the program sequence that results when a phase plane is requested with the
following constraints :
t - 10 seconds
X(0) =0 = Initial condition on state X
X,(0) =0 = [Initial condition on state X,
r(l) =1 = Step forcing function on state X,
r2) =0 =  Ramp forcing function on state x,

Screen 33

Do you want to ses a PHASE PLANE of X1 .vs. X2 ?
(Answer y arn) y

Screen 34

For how many seconds 7 10
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Screen 35

Enter the elemsnts of the INITIAL STATE vector - XK(0)

X1(0) = ? 0
X2(0) =7 0

Screen 36

Enter the elsments of the COMMAND INPUT veator-R.

Rt1) = 7 [
R(2}) =7 O

The next option a;/aﬂable is to select the method by which the optimal
gains are to be implemented. Two choices are available.

Screén 37

Select a gein schedule....{ Anewer 1l or 2 )

1) Use STEADY STATE gains ovar all steps .
2) Use DYNAMIC gains .

If the first option is chosen, then the state trajectories are calculated using
Equations 2.14 through 2.17 such that the /ast gain matrix calculated, F(N), is
substituted into Equation 2.17 during every cycle of the iteration process. The user
must be aware of this procedure when selecting option ! in Screen 37 because
OPTCON makes no attempt to verify that the gains have indeed reached steady state.
If the user selects option | when the gains do not exhibit steady state properties, then
the solution is 7ot optimal. If the gain trajectories do arrive at steady state prior to the
Nt stage, then selection of option ! in Screen 37 may be appropriate. The time
responsc cbtained in this fashion represents the behavior of the system using a fixed
gain feedback scheme.
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The second option in Screen 37 causes the feedback gains to be
dynamically implemented in the reverse order that they are calculated. The user is
cautioned that such implementation may not yield an acceptable time response. In the
example probiem, the gains reach steady state after approximately 500 stages. This
corresponds to t. = 5 seconds when At = 0.01. Consider the case of a sampled system
which has a transient time response longer than § seconds. The use of a'dynamic gain
schedule would be disasterous in this situation. Because the gains progress towards
zero as t approaches § seconds, the feedback channel is gradually eliminated from the
systern. The slow system, however, does not have enough time to rcaéh steady state
before the feedback gains go to zero. The error signal increases without bound and the
system rapidly becomes unstable. Two simple solutions for such a situation are :

1. Increase the number of time intervals, N. This causes the steady state portion
of the dynamic gain schedule to become more predominate.

2. Implement steady state gains instead of a dynamic gain schedule.
After a gain schedule is selected in Screen 37, OPTCON begins to compute
and save the state trajectories for X, and x, using Equations 2.14 through 2.17. The
message in Screen 38 informs the user that the program is still executing.

Screen 38

Caloulating Plotting Dats

After the state trajectories are computed, Screen 39 prompts the user.

Screen 39

READY TO DISPLAY DRANWING

|
Strike any key to continue.
The monitor is cleared upon any keystroke and the x, verses X, phase plane !

subsequently appears on the screen. The graph remains on the screen until the user

strikes any key. The monitor then clears and Screen 40 appears.

125

&__.____-__... L L L L o o e e sk i pel . s e A el L s s Sleshabedm b W L DR LA BE 1 BE AR



Screen 40

Do you went s hardoopy of this plot ? ( Anewer yorn ) y

If a n is entered in Screen 40, then the program advances -to Screen 41.
Otherwise, the message in Screen 38 reappears. After a short delay, a hardcopy graph
of the phase plane is automatically generated on the printer. See Figure A4, The
program then advances to Screen 41, . ' T

Screen 41

Do you went to see 2 time rusponse of your system ?

(Answer y or n)

If a n is cntered in Screen 41, then the first run of OPTCON is complete.
The program advances to Screen 44. If a p is entered in Screen 41, then the program
prompts the user to enter parameters for the time response. Refer to Screens 34
through 37. It is not required that the user enter the same information for the time
response that was entered for the phase plane. OPTCON recomputes the time
response or every run. It is suggested, however, that the user carefuily note the
pararrie;érs that are entered for each run. Initial conditions and command inputs are
recorded in the OPTFILE but this information does not appear on the graphs. After
the gain schedule is selected in Screen 37, OPTCON begins to compute and save the
state trajectories. When the calculations are complete, Screen 42 appears.
[ ] 7

Screen 42

Do you want to ses tha tims response table on the screen ?7
(Answer y or n)
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X1 vs. X2 PHASE PLANE
(Minini1zation over ALL STRGES)

USING STERDY STATE GAIN SCHEDULE

| I

-0.13 0.2t 0,54 0.88 .21
X1 STATE

Figure A.4 Phase Plane for Second Order Integrator Example
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A n response causes the program to begin generating data for the time
response plots. The user is cautioned that answering y in Screen 42 may result in a
lengthy delay as the N rows of data are scrolled onto the monitor. The option to view
this data on the monitor exists so that the user may gather exact numerical data
without exiting OPTCON to examine the OPTFILE. A short segment of the tabular
data appears in Screen 43. In the case of the example problem, this tabie continues
until 1000 rows are displayed. '

Screen 43
REAL
TIME REAL
INDEX  TIME x(1) X(2)

FHEHHHHHHHHHHRHOHHHHHHHHEHBHHRAHHHEHHHHHSHHHHHHHHHHEHEHHHHOHHHHNRHHH

1 .0100 .0000 »0000
2 +0200 .0000 .0099
3 .0300 .0002 .0197
L . 0400 .0004 .0292
5 .0800 .0008 .0386
6 .0600 .0012 0479
7 .0700 .0017 .0870
8 .0800 .002¢ 0659
? .0900 .,0031 . +0746
10 .1000 .0038 .0832

When the last row of the state trajectory table appears on the monitor, or
if tabular cutput is not selected in Screen 42, then OPTCON begins to generate data
for the state trajectory plots. Each state is plotted verses real time. During the
calculations, the messages in Screens 38 and 39 prompt the user. State x; is plotted
first and the n'® state 1s plotted last. The user may examine each individual graph on
the monitor. By striking any key, the user clears the graph from the screen and the
message in Screen 40 reappears. If the user does not desire a hardcopy, then a »
response allows the program to process data for the next time response graph. If a
hardcopy is desired, then a y is entered in Screen 40 and the procedure follows exactly
as before. See typical time response plots in Figures A.5a and A.5b. After all n states
are plotted, the program comnletes Block 8 in Figure A.1. The first run of OPTCON is
now complete and the user must answer y in Screen 44 in order to remain in the
program. If a n is entered in Screen 44, then execution terminates and the user is
immediately returned to the DOS environment. o
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Screen 44

This concludes the optimal control progras (OPTCON).
Do you want to run the prograa agein? (Answer yorn) Yy

Assuming that the user desires to remain in OPTCON, a y is entered in Screen 44, The
next section of the program is referred to as "the main menu” and is demonstrated
in Screen 45. ' '

Screen 45
SELECT ONE OF THE FOLLOWING OPTIONS:

1) Change the NUMBER of STAGES....cvavccieccccssesN
2) Charge the TERMINAL stats weighting matrix.....H
3) Change the TRAJECTORY state weighting metrix...Q
4) Change the CONTROL weighting factor.....cceces.R
8) Charnge the present A and B mtrices

6) Change the SAMPLE INTERVAL....occiensecncsoas DT
7) Change the present PHI and DEL matrices

8) Input an antirely NEW SYSTEM

9) NO CHANGES...RUN

101 EXIT the program

SELECTION...( MUST be a rnumber batween 1 and 10 )......

It is not necessary to describe in detail the operation of the main menu.
The user should enter the integer value that applies to the particular modification to be
made. If one of the first seven options is selected, the program responds as follows :
1. Echo the current value(s) of the parameter(s) to be modified.
2. Allow the user to keep or modify the selected parameter(s).

3. Return to the main menu for further modification, continued execution, or
termination of the program.

If option 8 in the main menu is selected, then OPTCON returns to Screen 4
and allows the user to enter new information for all parameters. In this case, no
previous values are remembered by the program and execution proceeds just as if this
is the first run. The OPTFILE, however, retains all information from any previous

runs.
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If option 9 is selected in the main menu, then the current values for all
system and cost function parameters are written into OPTFILE to signal the start of a
new run. Program execution begins with the gain calculation sequence represented by
Block 3 in Figure A.1. Screen 28 applies. The user may rapidly skip through the
intermediate steps of the program by answering » to several consecutive questions.
For instance, suppose that the user changes a single parameter by selecting one of the
first seven options in the main menu. In order to determine the effect of the changed
parameter on the time response of the system, the following sequence of messages and

—

responses is used.

Screen 46

SELECT ONE OF THE FOLLOWING OPTIONS:

1) Change the NUMBER of STAGES......ovesrienrsssseN
2) Change the TERMINAL state weighting metrix.....H
3) Change the TRAJECTORY state waighting metrix...Q

4) Change the CONTROL weighting factor...cceeeses R
§) Change the present A and B matrices
6) Change the SAMPLE INTERVAL....ccooaacsnesassd 0T

7) Change the present PHI and DEL matrices
8) Input an entirely NEW SYSTEM

9) NO CHANGES. ..RUN
10) EXIT the program

SELECTION...( MUST be a mmber between 1 and 10 )......%

-

Do you want to see the gain schedule table on the screen ?
(Ariswer yorn) n ‘

Do you want to ses the geins plotted ?

(Answer yorn) n

Do you want to ses a PHASE PLANE of X1 .vs. X2 ?
(Ahswar yorn) n

Do you want to see a time respornse of your system ?
(Answer yorn) y

At this point, the user may examine the system time response and evaluate
the impact of the newly modified parameter.
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By selecting option 10 in the main menu, the user is allowed to exit the
program. The message in Screen 44 reappears as a safety mechanism to prevent
inadvertant ejection from the program. If y is entered in Screen 44, then the main
menu reappears and program execution continues. Otherwise, the program terminates
and control is returned to DOS.

7. OPTCON Summary )

The OPTCON program is designed specifically so that the user can easily
modify problem parameters and rapidly obtain information about the effects of those
changes. Tabular and graphical information is available both on the monitor and in
hardcopy form. In an effort to make the prograrﬁ user-friendly, four techniques are
employed :

1. Menu driven options prevail.

2. User input is screened for valid format.

3. User inputs are echoed on the monitor.

4. All data is written into an external file for later examination.
The OPTCON program is quite useful as an interactive design tool for optimal control
systems. Extensive use is made of its assets during the design of an optimal controller
for the AROD in chapter three.
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APPENDIX B
OPTCON MAIN PROGRAM LISTING

The following code is written in MICROSOFT Fortran and is iatended to be
used on an IBM compatible system. This is the main program for OPTCON and must
be linked with the subroutines found in Appendices C and D. In addition, the Fortran,
Math, and PLOT88 libraries must be linked during the creation of an executable file.

L

ZNofloatcalls
debug
g
C LL63.FOR LAST MOD 12JULY87 OK  SDL
C NEW selective state plotting
g NEW state table formatting

COMMON /BLK1/ A,B,PHI,DEL
conuou /BLK2/ BEGTIM,FINTIM, NPTS,
XKNAML , YNAML | PNAM1L . PNAM2L , PNAM3L
counon /BLK3/ VTIME VTIMSS,VY,VYSS,VXXSS,VXYSS
counou /BLK4/ KFINAL, NSTAGE,NSTP1,0RDERN’ GNSKED USERGN, FNEG,
INPUT, BT, AVG, AVG2 , MAXVAL , NINP
couuon /BLKS/ XNAME, YNAME,PNAME1,PNAME2, PNAMES
INTEGER*2 OPTION,ORDERN, IGOOD,CODE,NSTAGE,NSTP1,KFINAL ,KPRIME,
GNSKED ,NPTS , LOPORT , MODEL , XNAML , YNAML , NCHAR1 , NCHAR2,
NCHAR3,STVAR,I,J,SKIP,OK K SYSTEM,GAIN . DTFLAG.PLTYPE,
CHNGN SCREEN NINPTS NINPP1,0RDNP1,GAINCH,GNSKD3,

STPLO
REAL*4 PSI(B 8)<P(8 2éFgZANéL2 GH(S 8),

++++

++++H+ 2
M
w0

% 'l éé xp1 DELINP 8 ,INPUT(8 1&
IE 58 1) ,PH Egé a% " DELRO éé ROWF FNEG(I §,

IME(1 FTEMP, TPINAL DT, TIM
pnamgﬁ ¢SS (9) vrru $§(9),Vx%ss(9), VXYSS(9) AVG(S) Avcz(aS

AL(8), ussnéu(é
CHARACTER*2 TEM

CHARACTER*3 ANS

CHARACTER*20 NAME

CHARACTER*30 XNAME YNAME
CHARACTER*S1 PNAME{,PNAME2,PNAME3

CHARACTER*S HDGé &
CHARACTER*4 HDG2(8)
HDG(l) = (1)
HDG(2) = 'F" 2)!
HDG(3) = 'F''(3)!
HDG(4) = 'F''(4)'
HDG(S) = 'F''(5)!
ADG(8) = 'F''(6)!'
HDG(7) = 'F''(7)!'
HDG(8) = 'F''(8)!'
HDG = 'X(1)'
HDG2(2) = 'X(2)'
HDG2(3) = 'X(3)'
HDG2(4) = 'X(4)'
HDG2(5) = 'X(5)'
HDG2(6) = 'X 6;'
HDG2(7) = 'X(7)'

134

At AT L AL A LW W L R OO WAL MO OO I L A ol Coa Wl M M O M I IR M I M X B P

P SR Y NPT IV STTP W JAR [W WL N



HDG2(8) = 'X(8)'
OPEN(9,FILE='OPTFILE',STATUS='NEW')

C
e sl e T e e e e e ek e ok e e e de e e e e e e e e e e e ek ek de ek e e e e de ek e e ke e dede e e dede e ke e dede e e e e e e e

Chkkkekkkkkdckkkiak PRINT OPTCON HEADING and INPUT PROBLEM ID *kiskikkiikix
Qe ek de e e e Je e e e v vl e e e e e e de s ok e e e e e ke e e e e e e ke e A e e e e e e e sk vl e e o e e e e de e e e e e e ke e ek

C

WRITES*,ZOOOZ

WRITE (*, 2010

PAUS

WRITE{*,ZOIS)
o READ (*,2020,END=1530)NAME
e e e de sk e e s v e e e e ok e e e de e deode de e e de e e ek e e e de dede A e e de e ke e de e dede ek ke dede e e ok ke Aok e ek
c*****ﬁ********** HEADING INFO FOR THE OQUTPUT FILE Y she e e o e ke sk i sfe e ke
e Feshe e 7 e e e e e e e e e o s e e e e ke e e e A sk e e e e ok s e e ek sk e e ok e e e e e de e e de e e v e e ke deofe e e e ok e e ek ke ok ke
¢ .

WRITE(9,2030

WRITE(9,2040

WRITE(9,2050 )NAME
c WRITE(9,2030
c**********************************************************************
Credkdesk dededededk ke de ke ke kk ok ENTER PLOTTER/PRINTER MODEL TYPE e e e T e e ve e e e e K

Chek ek kdok A ARk kki ki dedkkkikkikkhdkikkhkikkkkkkihkikihkikhkikhkkkikikikkkk

5 WRITE(*,62055)
READ (*,2070)TEMP
CALL COMPARE(TEMP,1,2,CODE, IGOOD)
IF$CODE.EQ.O)GOTO S
IF(IGOOD .EQ. 1)THEN
IOPORT = 0
MODEL =1

IOPORT = O°
MODEL = 60
ENDIF

C > i
Qe e e e e e e e e e e o e e s e e e A e e e e e e Ak ok e e e e e e e e e A e o e e Aok e e e de e e e e e e e e e e de ek ek deode e ek ok

Chekkeedek ks INITIALIZE B ,DEL USERGN MATRICES A dekd Rk k
c**********************************************************************

DO6TI=1,8
DO6J=1,8
B(I,J) = 0.0
DEL(I J = 0.0
USERGN(L,J) = 0.0
6 CONTINUE

¢
C e e s o e S i sl v e T s s v e A S i e e e 2k sl A ok e e Ak e ok e e e s ok ok e e e sk ok e e ok sl e e sk e sk e ek e e et Kok e de ek ke ke

Crerkeskdk sk dedkde e dde sk deokese sk NTER THE ORDER OF THE SYSTEM Jedeyedek fe ke ek
(C e e e sk e T e e i 3k ke e e e e 7 i i e e e sk e i v e S e e sk sk e e ok e s e e sl v e s vk e ok A e ke e o kol ok ek e dede Aok ook de e e ke

S**************** RESET FINAL ,GNSKED,GAINCH,GNSKD3 dederedek i ko gk
10 FINAL = 0
GNSKED = ]
GAINCH = 0

G
WRITE(*,2060)
*'2070 ) TEMP .
CALL COMPARE (TEMP,1
IF(CODE.E .o&coro 16
ORDERN = IGOOD
ORDNP1 = IGOOD + 1

C
(e v s e i vk ok s e e sk ok e ke e ok o e e e i sk e e e e e i e e 4 v i i e i she s e vl o e s v e o e e i e Ak e ek sk e sk e e ok e ke e e e e ok e ok

(C % v e e s ke e e e e e ol e e vl e ENng THE NUMBER OF cgNTaok ENPUTS o Ao de ek e e v ok e e e
(% e sk e o 7 sk e e ke i ke i e e i ke e v s e e e o A e 3k e e e Ap A e e o o e e ok e i sl sl s i ok s i ol o ek o e ok e e o ek ek e e ok e ok e

8,CODE, IGOOD)
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13 WRITE(* 2075
é ,2070) TEMP
CALL OHPARE(TEMP 1 8 CODE, 1GOOD)

CODE.E GOTO
NI&PTS = ?GO&
NINPP1l = IGOOD + 1 ' _
S**************** ECHO NINPTS Fdekdedesere s

WRITE(*,2076)NINPTS :
Chdekhkdkkdkkkkkkik MODIFY NINPTS 1IF NEEDED Fededededekde ek

16 WRITE(* 2077)
D (*,2190)ANSWER 4 -
- FE IF ANSWER.EQ.'N' .OR.ANSWER.E .'n';GOTO 17 : )
IF{ANSWER.EG. 'Y’ .OR.ANSWER.E .'y')GOTO 15
GOTO 16
c 17 CONTINUE
g****** SKIP COST FUNCTION ENTRY IF NUMBER OF CONTROLS .GT. 1  *kdkiax

IF(NINPTS .GT. 1) THEN
GNSKED = 3

ENDIFGOTO 340
(C 7 e e e e e e e e ok v e e e 2k sk e e e she s i v e sl e s s s e e e sl sheshe v ok ke vk e e she e e ke ok e ok e e e e ke e e e o e vk e ol e v e e e e
Cohdehkkkskrkisik ENTER THE NUMBER OF TIME INTERVALS  *#kdkikdkkskkkk

C R e s e sk e de e e o e e e e e s e vk el e v e vk o e e e s v vk e e v e i e e ke e e e v e ok ***********************

20 WRITE(* 2080
READ (*,*)NSTAG

E
IF(NSTAGE .GT. IOOO)GOTO 20
NSTPl = N%TA
IFgCHNGN .E I;GOTO 780
IF(FINAL .EQ. 1)GOTO 1520

c***********************************************************************
CHRkkrerkkdkdfedkdkdkkkkk INPUT THE MATRIX e e sie e vl e e e ok e S e
c************)************************** *******************************

30-LOoOP = 0

WRITE(*,b 2090

READ (*,2070)T

CALL OMPARE (TEMP 1

éconz E? o&coro 367
PTION = IGO
coro(4o 50,60) OPTION
GOTO 30
40 WRITE(*,2100)
50 wa:rn(* 2110)
GOTO 80
60 WRITE(*, 2120&
80 DO 90 I = 1,0RDERN
: 1 ORDERN

é% THE '
IF TION JEQ. 1 I,J; = 1.0
IF(OPTION .EQ. g IﬁJ = 0.0

3,CODE, IGOOD)

IF(OPTION .
WRITEZ(*, 130%1 J
READ (*,*)Q(f,J)

Gk dohddoh ko dohk A kok ECHO THE ¢ MATRIX dekededkde ook




100 CON'I‘INUE

ggxrz i2140
110 wn:rz( 2156 (x J J-1 ORDERN
F(LOOP .EQ)(?) éo % )
g**************** MODIFY THE Q MATRIX IF NEEDED sk ek ded ek
120 wnzrs(* 2160

é ,2070)TEMP
CALL oupaax(rzup 1,3,CODE, IGOOD)
gg gonz E GOTO 150’

corog130 50 1so)orrxou

—

c**************** CHANGE ONE ELEMENT OF THE Q MATRIX ek ke
130 WRITE(* 2170)

RE L%V,
IF§I.£T.1).6R. 1.GT.ORDERN .OR. J.LT.1 .OR. J.GT.ORDERN)GOTO 130
WR rn(*,2130%1,a
READ *,*223 L3
wnzrs *'2 &
0 140 f=1,0RDERN
140 warrs *,2150)(Q(I,J),J=1,0RDERN)
150 wa:rz *! 2180
%2190 ) ANSWER

IF SWER. E «'N'.OR.ANSWER.E .'n';GOTO 160
IF AN??%R EQ.'Y! . OR.ANSWER.EQ.'y' }GOTO 130

GOT0
160 IF(FINAL.EQ.1)GOTO 1520

C
C e s de e de e dete s e e sk s e e e s e e i e i e e v e vl s s e e e s v v she e sl e ok e e s e e ke e ek e e e e e Fe ke ok e A e ke e de e e ek

ChAqdededddek ek dedesk INPUT H MATRIX Jede e e e e
CHokededededed ek e ek dedede e e s e et e ek e ek ek e e e sk e ok A A Ak ek sk A ek e ke ok e e e e e sk

170 LOOP = 0
WRITE (* zzoo;
READ (*, 2070)TEMP
CALL oupaaz(rzur 1,3,CODE, IGOOD)
- —IF(CODE. ? O)GOTO 190’

OPTION =

coro(%gg ,190 200) OPTION

GOTOQ

180 WRITE(*,62210)
GOTO 210

190 WRITE(* 2220)

4C0 WRITEé*f2230)

210 ORDERN
RDERN

bo 20
IF{%TION .EQ. %§
2

é’

IF(OPTION .EQ.
IF OPTIION’; .

ELS
évx,a) = 0.0
c 220 CONTINUE
Cheoedksededehdeh sk sk ECHO THE H MATRIX Jeodedede ek e ek e e
230
wazrzs* 2250
DO 240 f=1,0RDERN
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240 WRI?E\°§2}€8?(¥§Idg¥dJ-1 ORDERN)

g**************** MODIFY THE K MATRIX IF NEEDED Fedededesede e de Ak ok

¢
250 wnxrs(* 2%g$
CA L oupaaz(rznp 1,3, CODE, IGOOD)
IF (CODE. sg 240
OPTION =
corosgso 190 290)0PTION

S**************** CHANGE ONE ELEMENT OF THE H  MATRIX  “hwsonksshddik
C
*
260 WR%TE( 2}70) -

IF§I LT 1 6R. I GT.ORDERN .OR. J.LT.1 .OR. J.GT. ORDERN)GOTO 260
WRITE(* 2240%1

READ é
gRIg; * 2 5
270 WRITEé* 2150 (H(I J),J=1,0RDERN)
280 WRITE(*
READ )ANSWER
IF(ANSWER.EQ.'N' .OR.ANSWER.E '3GOT0 290
IF ANSWER EQ.'Y' .OR.ANSWER.E y' GOTO 260

GOTO 2
290 IF(FINAL.EQ.1)GOTO 1520

(% v e e e e e v e e s e e sk e e e e e e s e e vl o e e s e e s s e sl ok e s s e vl e e o v e vl e e e s e e e e v v e sl Yo e e ek ok ke e e e e

Credededese dedede e dedede ke INPUT R dekededessedededeok e
Cokesedededesedete dededede e sk e de e e dede ek e e de s e ek e e e e dde e ok e ke e e e dede e e e e o e e e vede e e

¢
300 WRITE(*,2260
READ((*,*)R)

S**************** ECHO R desk sk sk e ek ek
¢ - '
310 WRITE(*,2270)R
Chededeseedede ks e e e de e MODIFY R IF NEEDED dededede ke A ke
c -
320 WRITE(*,2280
READ (*,219

IF ANSWE E 'N'.OR ANSWER.E ';GOTO 330
IF (ANSWER.EQ.'Y' .OR.ANSWER.E Y' GOTC 300

GOTO 320
- 330 IF(FINAL.EQ.1)GOTO 1520

Gtk e e e e e e e e e e e e ke e e e e e e o e e e e e e e e e e e e e e e e e e ek sk e e
Chekderededederkdek ke sk CHOOSE TO ENTER EITHER A Jeste ek e e e ek e

Crlesesdesk ek e e e CQNTINUQUS TIME SYSTEM OR A Fede ke de e e e e ek
Gt des de e e e e e DISCRETE TIME SYSTEM Feledkodddedek ke kk
C***********************************************************************

C
340 wn:rz *,2290
{42550 e

* 207
oupan; rznp 0,1,CODE, IGOOD)
IF cooz zg cor 0’340
c SYSTEM = 1GoOD
350 1r(sysrzn)3so %so ,360
READ §* 2190 WER
:réau WER. EQ 'Y'.on ANSWER.EQ.'y')GOTO 370
SYSTEM -
360  WRITE(*,2
READ 2190)AN

IF An§wtn EQ.'Y'. OR . ANSHER. EQ.'y’ )GOTO 590
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SYSTEM = 0
GOTO 350

C
C**********************************************************************

CRodeiR ARk ARR ke sk INPUT THE MATRIX R i ik AR Rk
CRAAANARKRF AR ek e A stk e e e ek ok PR U .1 1.1 SN

c
370 WRITE(* 2320
DO 380 'I=1, RbERN

DO 380 J*l QRDE
%330%1 J
PEAD
38C CONTINUE

c ‘
dedededeseedolede ok ek CHAN dedesdesie etk
Grkkswuniwkis  TF A DISCRETE TINE SYSTEM WAS ENTERED wheiiann

c
390 CONTINUE
IF(.:YSTEH .!?3 1)THEN
WRIT

READ * 2o7ongur
GOTO 1520
ENDIF

G ik Ak k& de ECHO THE A MATRIX Feske e etk e e e
WRITE(* 2340

o 400 WRITE(®, 2150)(A(I J),J=1,0RDERN)

Gk sk hrkihkkA MODIFY THE A MATRIX IF NEEDED sk e ke e de e

¢
410 wn:rz(* 2160
%2070 ) TEMP
c L ournaz(rzur 1,3, CODE, 1GOOD)
IF (CODE. Eg,o coto 4io0’
OPTION =
TOS?ZO ,370 450)orrron

S**************** CHANGE ONE ELEMENT OF THE A  MATRIR  Roskdoskskicoksssk

c
420“HRITE(* 21;?)

=000 0y

~

SWER
IF(ANSWER.EQ.'N' .OR.ANSWER.E .'n';GOTO 450
1F ANigER.E «'Y' .OR.ANSWER.EQ.'y')GOTO 420

GOTO 440
450 IF(FINAL.EQ.1)GOTO 480

c***********************************************************************
C A desedesksk e e e ke INPUT THE MATRIX deske e e dede e e e
Cedede e e e e e e e e e e e e ek ek ke L TR . L. 2 S A

c
460 WRITE;* 23508
470 =l RDE

0 470 I = l;!NINP'I‘S
WRITEz* 2360% jg

470 CONTINUE

ChAA AR AR SR AR Jededodeded gk ke
g ECHO THE B  MATRIX
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480 CONTINUE
wnxrm 2370
DO 490 fa=1 3 DERN
490 warrn(*,zxsb (B(I,J),J=1,NINPTS)
C**************** MODIFY THE B “RTRIX IF NEEDED e v v e e v e 7 e e ek
c
500 wn:rs(* 2160 :

207
CALL éonraaz(rzup 1,3,CODE, IGOOD)
IF (CODE. EQ.0 cor ‘560’
OPTION = GO
corog§1o ,460, 540)oprrou

g**************** CHANGE ONE ELEMENT OF THE B  MATRIK ‘okihidcascinn
c
510 WRITE(* 217 )

)1
IF%I .LT.1 .6 .GT.ORDERN .OR. J.LT.l1 .OR. J.GT.NINPTS)GOTO 510

l-h/”(..

520 wn:rz *,2150) (B(I,J),J=1,NINPTS)
530 WRITE(* 2180
READ &:219 YANSWER
IF (ANSWER.EQ. 'N' .OR.ANSWER.EQ. 'n' )GOTO 540
IF(ANSWER.EJ. 'Y' .OR.ANSKER.EQ.'y' )GOTO 510

GOTO 530 .
540 IF(FINAL.EQ.1)GOTO 1520
c***********************************************************************

Chevedeskdedededede ek etk s LE Iin&..,_gr dedekdedkihkhdk
c**************************** ik dededede ek ek ek s e eskededesfedede deredede e e e ek
c

550 wnrrz(* 238q%

READ

¢ DTFLA
Chikkkkkkkkkkkkdk®  TF A DISCRETE TIME SYSTEM WAS ENTERED  *kidkskikksk
G e Fedede v e e e e vk ek e e AND NO VALUE FOR DT HAS BEEN ENTERED e e e e ek e e ke
CRhdkddkkddedkdcdedddedk THEN PRINT OUT A MESSAGE Fesdedede s Je e e e
c

560 IF(DTFLAG EQ, )THEN

;TEH?
8570 1525
ENDIF ,

S**************** ECHO THE SAMPLE TIME....DT e dede ek v e ek
c WRITE(*,2390)DT
ke e e de e s e de e ok e e MODIFY THE SAMPLE TIME IF NEEDED Fedededesededesede ek
c

570 WRIT!(**24OO

219 WER
IF ANSW 'N'.OR.ANSWER.E .'n')GOTO 580

IF ANSWER E .'Y'.OR.ANSWER.EQ.'y' )GOTO 550

c

Gt dede de e de e e de e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e de e e e e e e e e e e e
Chickikkkkkkkkkkk CONVERT A and B  TO PHI and DEL Jededk AR ek
C************************************* ke e ok e A ke ek sk

C
580 IF(SYSTEH .E% ) THEN
L PHI EL(DT ORDEFRN,NINPTS)

DI
IF(FINAL EQ.1)GOTO 1520
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GOTO 780

g***********************************************************************
o e vy e e 3 e e e e v v v e e ok e e I ok Yo ke K e e o ok
g**************************igggz*ggiﬁ**ggi***§§I§£§*********************
¢
590 CONTINUE
DIFLAG = 0
600 WRITE( .24103
DO 610 'I=1,ORDERN
DO 610 J=1,0RDERN
wa:rzz*,z4zo%f J
t,9)

READ (*,*)PH
610 CONTINUE

¢
Ghvkdiokikkivkikik DO NOT ALLOW CHANGES TO  PHI and DEL  *skisikiiik
Chickimksiniikikink TF A CONTINUOUS TIME SYSTEM WAS ENTERED iokkinfisikis

620 CONTINUE
IF(SYSTEM .%?. 0) THEN
WRITE(*, 2425
READ (*,2070)TEMP
fgpro 1550

S**************** ECHO THE PHI  MATRIX Fereseskve ek ek e e e

wnxras* 2430&

DO 630 f=1,0RDERN

c 630 WRITE(*,2150) (PHI(I,J),J=1,0RDERN)

Crdehsdedede e de ek MODIFY THE PHI MATRIX IF NEEDED  *dksdstikikssedsk

¢
640 WRITE(*, 2160
READ (*,2070)TEMP
CALL COMPARE(TEMP,1,3,CODE,IGOOD)
IF(CODE.EQ.0)GOTO 640
OPTION = IGoOD
. GOTO%?SO,GOO,GBO)OPTION
GOTO 640
g**************** GE ONE ELEMENT OF THE PHI MATRIX e e e v e e 7 e e e e e
e CHAN
650 WRITE(*,2170)
READ (%,%)I,J
‘1" .6R. I.GT.ORDERN .OR. J.LT.l .OR. J.GT.ORDERN)GOTO 650

« $2)

DO, =1, ORDERN '
660 WRITE(*,2150)(PHI(I,J),J=1,0RDERN)

670 WRITE?* 2180}
READ YANSWER

IF(ANSWER.EQ.'N' .OR.ANSWER.E .'n';GOTO 680
IF(ANSWER.EQ.'Y'.OR.ANSWER.EQ.'y')GOTO 650

GOTO 670
680 IF(FINAL.EQ.1)GOTO 710

G ek ek e de e et e e e o e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e e ke e e e
ek e e e ek e ek ek e e INPUT THE DEL . MATRIX dededde Rk ok ek
ek et des e ek ek e e et e e ek e e e e e e e e ek e e e e A ek e e e e e e e e e e e e e e e

READ
700 CONTINUE

S**************** ECHO THE DEL MATRIX Rk sk R e Rdede kR




c
710 C
WRIT%NE 2460

720 NRITE%* 2156)%053§I J), J=1,NINPTS)
8**************** MODIFY THE DEL MATRIX IF NEEDED  orhsiikiskkksk

¢
730 wn:rn(* z%gg
CALL onpnan(rzur 1,3,CODE, I1GOOD)
gg gooz £ .o 001 0’740’
corog?4o 690 770)oprzon

S**************** CHANGE ONE ELEMENT OF THE DEL MATRIX -Fideda®Tikiih
€ 240 wggrs(* 2170)
IF(1. I T4R. I.GT.ORDERN .OR. J.LT.1 .OR. J.GT. NINPTS)GOTO 740
Dgl%f, J)

DO 75
750 WRITE(* §§36§(°EL<I ,J),J=1,NINPTS)

760 WRITE(* )
READ XN 2190)ANSWER
IF(ANSWER.EQ.'N' .OR.ANSWER.E GOTO 770
IF ANS?ER EQ.'Y' ,OR.ANSWER.E y GOTO 740

GOTO 7
770 IF(FINAL.EQ.1)GOTO 1520

C
(© e e e e e e e e e e vl e e v e ke e ok e e sle A ol e e e e e e e e e e e e e v e ke e ok e v e e sk o e e e ol ol sl el e e e vl v ok e e sk o e ve e e

o sie e e e e v e e e e e e e e e Fedesk ek ok Fedede e Je e
g**************** WRITE ALL CURRENT INFORMATION To THE Feddede e de sk de e ek ok e

c***********************************HX****E*****************************

c
780 FINAL =

WRITE(9, 2030
WRITE(9,2470)ORDERN
WR rz 9!2475 NINPTS
- —IF(GNSKED .EQ. GOTO 805
WR rz 9,2480 NST GE
WRITE(9,2140
TRACEQ = 0.
DO 79 I=1,0RDERN
Cfg = T + Q(1,1)
790 wnxrz 24 90)(Q ,J),J=1 ,ORDERN)
wnrrz 2250

DO =],0
800 WRITEé9 2490 (H(I J),J=1,0RDERN)

R
805 IF§SYS zﬁg 810 810,840
810 WRITE éo

Do RDERN
820 wn:rzgs 2496) A(I J),J=1,0RDERN)

DO i-1
830 wnzrzza 2496)33&; ,J),J=1,NINPTS)

WRITE (9,2
840 wn:rz(eso 2430 ) CDERN
850 wnrwzgg 2496) PHI(I,J),J=1,O0RDERN)
wa:gs
860 w§§rgs (9 24é0)(nzL(I J),J=1,NINPTS)
Ir(cnéxén .Eér HXL
ChxkkhAkk 1 caxns ARE TO BE CALCULATED Fede Rk AR K Ak e
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;@pro 1010
F raaczq§e7o 870,880
" 2900)

870 11:&9
PNAMEZ2® ‘éuinimum TERMINAL STATES Control)'
PNAM2L= 3
GO TO 890
880 wn:rzgﬁ 2510)
PNAME 2= ‘suinimization over ALL STAGES)'
c PNAM2L= 3
C***********************************************************************
(€ e e e i o e e e e e ol e e e INITIALIZE MATRICES PRIOR TO ***:********
v s v e e e e e vie e ole e ok vk e R e Yo e 7 s e e vl e e ok ok
g****************************&sg£§££§2*2£$£§e£*255§ e e e e vie e e e ke e e P vhe v e e e ok e e

L

c
890 TONTINUE
DO 900 I=1,O0RDERN
EM(I) = 0.0
M(I) = 0.0
DO 900 J=1,O0RDERN
GM(I,J) = 0.0

HM(I J) = 0.0
900 P(I,J)=H(I,T)
g********* DO YOU WANT TO SEE THE GAINS TABLE ON THE SCREEN ? #dtistissksk

*Zz1903auswzn

WRITE(*,62515
READ
. IF(ANSWER.EQ.'N'.OR.ANSWER.E .'n';SCREEN = 0
c IF(ANSWER.EQ.'Y' .OR.ANSWER.EQ.'y' )SCREEN = ]
Rk kR kRRRAARAKR dededc iR dedde R ek
S**************** PRINT "E“8§¥§H§ER62¥§§"T TABLE e ded Rk ik R
c

IF(SCREEN .EQ. 1)THEN
WRITES*, 20;(HDG(I),I-1,0RDERN)
*,2030

WRITE(*,
ENDIF
WRITE29,2520;(HDG(I),I-I,ORQERN)
c WRITE(9,2030
Gk deseskak e dedk ke dedddededkdededodedok dodderdrdedededoe s dededeskdedededede oo ke dede ke ded ook ok de e e de oo e
e dededededesde oo e v e de v de ke LOOP TO ITERATE RICATI EQUATIONS Fede e ek dek e
e Fe e e e e ke s e e ke e o e gl s e e sl e o g vl e s e e e 7 ok e 2 e 2K 7 K 7 T T e e e ok ek g e 3 e e ok e e ke e e e ke e e e Koo K ey

DO 1000 KK=1,NSTAGE
KREAL = NSTP1l - KK
DEN=0,0
DO 910 I=1,ORDERN
DO 910 J=1,O0RDERN.
910 zug:) = EM(I) + DEL(J,1) * P(J,I)
DO 930 I=),ORDERN
DO 920 'J=1 ORDERN
920 FH(I& = FM 1} + EM(J) * PHI(J,I)
930 DEN = DEN + EM(I) * DEL(I,1)
DEN = DEN + R

c
Chikkiikhk ENSURE THAT THE DENOMINATOR DOES NOT GO TO ZERQ *ikkikkiiixk

IF( DEN .EQ. O gTHEN
WRITE (*,25 03KK-1
WRITE(9,2530)KK~1
NSTAGE = KK - 1
GOTO 1007

ENDIF

C
g**************** CALCULATE OPTIMAL GAINS FOR THIS STEP *adkdkkkk
DO 940 I=1,0RDERN
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FN?G(ﬁK)I) = g?é&%{??u
940 EM(I) =
€ dedede v v verk de ok v e v v e PRINT OPTIMAL GAINS FOR THIS STEP o e i vl vl e vl o v e e
¢ IF(SCR?EN .E %}THEN THEN
ate RIT (* ZSQO)KK KREAL, (FTRAN(I), I-I ORDERN)
mmv;nrrz(*,zsu)xx,xnmn, (FTRAN(I),I=1,0RDERN)
ENDIF
IF(ORDERN 4) THEN
WRITE(9 2540)KK KREAL, (FTRAN(I),I=1,ORDERN)

LS
ND;?BITE(9,2541)KK,KREAL,(FTRAN(I),I'I,ORDERN)

S**************** CALCULATE PSI(K,I,J) vk sk s e e
¢
DO 950 I=1,ORDERN
DO 950 'J=1, ORDERN
950 PSI(I.J) = PHI(I,J) + DEL(I,1) * FTRAN(J)
Credededededededededed dekdek CALCULATE P (K,I,J) Jeede ek ek e e
(o4

DO 960 I=1,ORDERN
DO 960 J=1, ORDERN
960 GM(I,J) DQH?%P J) ¥ PSI(L I) * P(L,J)
=
S 580 1=1, 8 AN
DO 980 J=1, ORDERN
DO 970 L=1, ORDERN

970 = JL) % ,

MM, p) HM(I m)(:, ( 2I'J)1953g. *'*J)r'rm(x) * FTRAN(J)
980 81 o o 4

- DO 99C I=1 ORDERN

DO 990 J=1, ORDERN
990 GM(I.J) = 0.0

g***t*_t********** DISCRETE TIME VECTOR FOR PLOTTING GAINS #isisiskkk
z VTIME(KK) = KK

1000 CONTINUE |

Gk kkkAkAX% DO YOU WANT TO SEE THE GAINS PLOTTED 7 kkikkkdok

1001 WRITE(* 25453
2190)ANSWER

IF SWER EQ.'N'.OR.ANSWER.E .'n';GOTO 1006
IF ANSWER EQ.'Y' .OR.ANSWER.EQ.'y')GOTO 1002
c GOTO 1001
C ks ek dodeskdededodededesede LOOP TO PI.OT OUT THE GAINS e e e e A Fe ok e Fe Fe ok ok
c
1002 DO 1005 GAIN = 1,0RDERN
C %Ko e e Fesesde v ek de de sk e SET THE GAIN PLOT TITLE e e Fe sk ok e ok e e e e
C
IF(GAIN.EQ.1)PNAMELl = 'FEEDBACK GAIN (F1) FOR STATE X1'
IF(GAIN.EQ.2)PNAMELl = 'FEEDBACK GAIN (F2) FOR STATE X2'
IF(GAIN.EQ.3)PNAME1l = 'FEEDBACK GAIN (F3) FOR STATE X3'
IF(GAIN.EQO.4)PNAME]1 = 'FEEDBACK GAIN (F4) FOR STATE X4'
IF(GAIN.EQ.5)PNAMELl = 'FEEDBACK GAIN (F5) FOR STATE X5§'
IF(GAIN.EQ.6)PNAMEL = 'FEEDBACK GAIN (F6) FOR STATE X6'
IF(GAIN.EQ.7)PNAMELl = 'FEEDBACK GAIN (F7) FOR STATE X7'
IF(GAIN.EQ.8)PNAMEL = 'FEEDBACK GAIN (F8) FOR STATE X8'
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PNAMIL = 31,

C
C ek e e e s e v vl sk vk v vl vl e e vl e e ok e e ol vl e e sl e e sk e e sl e ke i e vl s v ate i e e i ke ol e vk vle sl s e e e e vl vl sl i e e e v e ok e e e

CRkdeksedekdesskdeskededese 5&21 88 GRAPHICS ek e ek e de ke
c***************************** Ve e 71 e e vk v e v v v vie v e e e e e e i sl e e e v ol e e v e e e vk ek ok

Gk akkkkmokikk  SET UP INITIAL PARAMETERS FOR GAIN PLOT  iiksdinn
BEGTIM 0.0
FINTIM = NSTAGE
NPTS

Do 1003 J = 1
VY? (J) = 0.0
c1003 vrIMss(J) = ((FINTIM - BEGTIM)/6.)*(J-1)
g**************** GENERATE GAIN VECTOR FOR PLOTTING GAINS *idkiihdhikidk
.- DO 1004 KREAL = 1,NSTAGE : =
= NSTP) - KREA& _
& = FNEG(KK,GAIN

Chhkkkkkkk TEST LINE FOR SELECTING PROPER COLUMN OF GAINS FOLLOWS **::

stalalalalalalalaly SEE LLS1 FOR COMPILED VERSION

c WRITE(*,*) GAIN,KREAL,KK,FNEG(KK,GAIN)

C1004 CONTINUE

CRikdededededodesedede ek MAKE THE GAIN PLOT Fedeskdedehek A kdk

C
IF(GAIN .EQ. 1)PAUSE
CALL GRAPH 99 9,1)

Sk AkikkAX TS A HARDCOPY OF THE GAIN PLOT DESIRED 7 siisciiokick
¢

wa:rz 2595;
*’ 2190 ) ANSWER
IF SWER,EQ.'Y' .OR.ANSWER.EQ.'y')
+ ALL GRAFH 'OPORT, MODEL, 1)

C1005 CONTINUE
ChAkdkhkhkkkhkikiik DO YOU WANT TO CHANGE NSTAGE ? Rdkeddkkkdkdkkk

C
1006 CHNGN = O
WRITE(* 2546;
- —READ (*,62190)ANSWER
IF(ANSWER.E «'Y' .,OR.ANSWER.EQ. 'y' )THEN
CHNGN =

GOTO 20
ELSEIF(ANSWER.EQ.'N'.OR.ANSWER.EQ.'n')THEN
GOTO 1007
LSE
GOTO1006
DIF

S**************** IS A PHASE PLANE DESIRED ? ded Rk stk Kok

c
1007 WRITE(**2547
READ gN 2190)ANSWER
IF(ANSWER.ZQ.'Y'.OR. ANSWER 2Q.'y') THEN
NSTPé = ¥STAGE 1

PHAS
GOTO 1025
éANSWER .EQ.'N'.OR.ANSWER.EQ. 'n')GOTO 1010
c 070 1007
CFededlede oo s e e e e e e e IS A TIME RESPONSE DESIRED ? dededededkddkh ik

c
1010 PHASE = 0
WRITE (* 2550;
READ (*,2190)ANSWER
IF (ANSWER. £Q.'Y' ,OR.ANSWER.EQ.'y' )GOTO 1020
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IFéANSWER.EQ.'N'.OR.ANSWER.EQ.'n')GOTO 1510
GOTO 1010

C e dedeededese ek s e sk e ek e GRAPH IS TO BE A TIME RESPONSE Ao deh ke
) 1020 NSTP1 = NSTAGE + 1
PLTYPE = 3

: g**************** HOW MANY SECONDS ? Rokderedededde kh ke k
c B .
: 1028 wn:rz(**zgso
Ly ¢ READ (*,*)TFINAL
:: Cededededesooede ke desdedek ek INPUT DT IF NOT ALREADY KNOWN vedevkeske v sk ek ok
. c
G IF(DTFLAG .%2; 0) THEN
S WRITE(*,62380)
READ (*,*)DT
o .- DTFLAG = ) . -
’ c ENDIF .
i% Cheddededkdededddedekkdkdk CALCULATE FINAL VALUE OF K dedededesedekkkkdedk
" c
X KFINAL = NINT(TFINAL/DT)
. TFTEMP = KFINAL * DT

IF(TFTEMP .LT. TFINAL) THEN
: KFINAL = KFINAL + 1
oy TFINAL = KFINAL * DT

M ; ENDIF

y Ghkkdkdikkdkdkk  ENSURE THAT ENOUGH GAINS ARE CALCLLATED *tiisciisiis
ﬁ c**************** TO COVER THE DESIRED TIME RANGE e e e e e 7 v e e Yo v
B c

a IF (GNSKED .EQ. 3) GOTO 1029

W IF((KFINAL-1) .GT. NSTAGE) THEN
an IM = DT * NSTAGE

i WRITE (*,2561)MAXTIM
3 GOTO 1035
E S**************** READ IN THE INITIAL STATE VECTOR dededesek Fede R e
. ¢ _
- 1029 waxrzé* 2565)
o DO 1030 Ia1 ORDERN
N o wnrtmé ,2566&1
R READ (*,*)XKO(I,1)
i 1030 CONTINUE
4
f g**************** READ IN THE COMMAND INPUT VECTOR ‘************
i : WRITE(*,2570) |
X ' DO 1035 I=1 ORDERN
) wa:rzi ,258&%1
4 READ (*,*)INPUT(I,1)
¥ C1035 CONTINUE
s
ChAerikide WRITE INITIAL STATE AND COMMAND INPUT VECTOR “okkskskssdesksk
o S********* TO OUTPUT FILE 2 e e e e e sk A ok e
¥
B WRITE(9,2030
- WRITE (9,2584
| DO 1036 I = 1, ORDERN
¢ WRITE(9,2585) I,XKG(I,1),INPUT(I,1)
ey 1036 CONTINUE
. g**************** CHOOSE EITHER STEADY STATE GAINS 1 e e e g e 7 A e vk de de e
ﬁ C**************** OR DYNAMIC GAINS 2 e e e e e Fe e Fe e ok ke A
;% c**************** OR USER DEFINED GAINS 3 e e e vk e e A 5k e ok ok e
‘§ Chedeskddeded K de ks Ak IF ONLY ONE CONTROL INPUT IS USED Koo sedede dedk e Kk
wv ¢
! 1040 IF(NINPTS .EOQ. 32 THEN
N 1F (GAINCGH .NE. 2)THEN
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WRITE (* 2590;

READ (*, 2070 )TEMP

CALL COMPARE (TEMP,1,3,CODE,IGOOD)
IF§CODE E?Gogcoro 1046

NSKED =
ELSE
GAINCH = 1
ENDIF
ELSE
GNSKED = 3
c**********£&£}£142 /143) GngngEADY STATE GAINS ekt ek
141 PNAME3 = 'OPTIMUM STEADY STATE GAIN SCHEDULE'
PNAM3L = 34.
GOTO 1054 . L )
C ke Tededesk dede ek ek USE DYNAMIC GAINS Rk khdFekT ke dkk
142 Pgﬁﬁgth 'ggTIHUH DYNAMIC GAIN SCHEDULE'

c***********}**** IMPLEMENT USER DEFINED FEEDBACK GAINS *sickskiskikskk
143 PNAMEZ = 'Implementing
PNAM2ZL =
PNAME3 = 'ussn DEFINED GAINS'
PNAM3L = 18,
IF( GNSKDB .EQ 1 xngoro 1043
IF( FI ;EQ. EQ. 1 ) GOTO 1043
C******* ******* IN’PUT USER DEFINED FEED ACK GAINS e g e e e v s 7 e e e e
1044 DO 1045 I = 1 ,NINPTS
DO 1045 J = 1 ORDERN
WRITE

READ 2* *) UgERGN(I J)
1045 CONTINUE
GNSKD3 = 1
Chhskhkhkhhikkrihh BCHO USER DEFINED FEEDBACK MATRIX e o v e e e ve e e e e e
c
1043 WRITE(*,62593) :
DO 1046 I=l NINPTS
1046 WRITE(*,25945(USERGN(I,J), J=1 ,ORDERN)
C**************** MODIFY THE USER DEFINED GAINS IF NEEDED ik
1047‘WRITE(**21603
207 TE
CALL OMPARE TEMP 1,3,CODE, IGOOD)
IF(CODE.EQ.0 goTo 1647
OPTION = 1GOQD
GOTOS}O48 ,1044,1052)0PTION
C
g********* CHANGE ONE ELEHENT OF USER DEFINED GAIN MATRIX “dokseddedddskksk
1048 wgéTE(* 2170)

IF?? LT. 1 63. I.GT.NINPTS .OR. J.LT.l
J .GT .ORDERN)GOTO 1048
wn:rsg* ,2592

sgggz * *gus&n&u(x J)

DO 1049 I=1 NINPTS
1049 WRITE&* . 2594 (USERGN(I J),J=1,0RDERN)
1051 WRITE *2 80

READ (*,2190)AN

SWER
IF(ANSWER.EQ.'N'.OR.ANSWER.E .'n'gcoro 1052
IF(ANSWER.EJ.'Y' .OR.ANSWER.E§. 'y’ )GOTO 1048
c GOTO 1051
Ch#kkhxki*  WRITE USER DEFINED GAIN VECTOR TO OUTPUT FILE  whsisinsn

C
1052 CONTINUE
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WRITE(9 2593
DO 1083°T =
WRITE(9, 1594) (USERGN(I J),J=1,0RDERN)
1053 CONTINUE
WRITE(9, 2030;
1054 IF(FINAL. EQ 1)GOTO 1520

WRITE§9 2030%

IF(PHASE .EQ 0) GOTO 1050 ‘ ’
Chekddedkddkdidedk Ak CALCULATE STATES FOR PHASE PLANE Yo ve e de e ek ek ok
CALL STCALC(I XK0,0,0)
CHARRIRKRRKIAXRAK SET UP INITIAL PARAMETERS FOR THE RkkARAAAAKK
¥ desiede o ek e de v e e sk e ok HASE PLANE PLOT e e e e e e e e ke ke
c NPTS = KFINAL .
Chkkded sk dedok Ak PLOT THE PHASE PLANE e e v e e o e A oke ok e
c . -
c ' - CALL GRAPH(99,99,2) :
Qoo dededede e se ek IS A HARDCOPY OF THE PLOT DESIRED ? Je e e e v e Fe e e Fe Fe e
C
WRITE(* 2595;
READ (*,2190)ANSWER
Codg& gWER .EQ.'Y' .OR.ANSWER.EQ.'y')CALL GRAPH(IOPORT,6MODEL,2)
c GOTO 1010
Cheedkedkdkdddedededhkiekdk DO YOU WANT TO SEE THE TIME RESPONSE e vl v v e e e e e ok e e
c**************** TABLE ON THE SCREEN ? dedededededede sk e

1050 WRITE(* 25?%3
IFi SWER. E ‘N'.OR ANSWER.E ‘;SCREEN 2 0
IF(ANSWER.EQ.'Y'.OR.ANSWER.E y' SCREEN = 1

Cakikikkkkkhkkhkk  SELECT HOW THE STATES ARE TO BE PLOTTED Mk
151 WRITE(% 2598

* 2070) TEMP
CALL OMPARE ( TEHP 1,3,CODE, IGOOD)

Sh{gont e gjcomo sl

(o}
Chedekkokodeddekdok kkkdk LOOP TO PLOT QUT STATE TRAJECTORIES ededdedkododkokkkkk
c DO 1500 STVAR = 1,0RDERN
Chrhkhhkkkkhkkhkk IS THIS STATE TO BE PLOTTED ? e e e o e T e s Ao e ke e
> .
IF( STPLOT . Eézs THEN
WRITE 99 STVAR
'READ (*,2190)ANSWER
IF%AN WER.EQ.'N' .OR.ANSWER. 58 ;PLOTCH
IF(ANSWER.E .’Y'.OR.ANSWER EQ.'y' )PLOTCH =
NDIF
g***********************************************************************
ChAkikkidkhkkkkikirk PRINT HEADING FOR QUTPUT TABLE e v e v v i v e v v ok sk
Chkkkhhhkkkkkikkk TIME RESPONSE Je e e 7 v v 7k ok ke e e ke

(e i v e e ok v 7 2k v e v 7k v e v e e e e e e e 2k e e e e e e vk ke sk ol 7k e o ok e e ok ok e sk o e e sk e e o e e s ke e vk e e ke ok e e e e e 7 T e

IF(STVAR .E

1

IF(S %%

WRI 25;(HDGZ(I) I'l ,ORDERN)
gﬁITE * ,2030

ENDI
WRITEi9,2525;(HDGZ(I),I-l,ORDERN)
NDI%'RITE 9,2030

¢
Chkh Rk Rhh SKIP PLOTTING IF NO PLOT IS DESIRED RRRARIRARIKK
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L Chikkkkkkx  BUT MUST CALCULATE STATES ON FIRST TIME THROUGH ik

o C
SRR IF(STVAR .NE.l
B IF(STPLOT 3) GOT01499
C IF(STPLCT E .AND. PLOTCH .EQ. 0) GOT01499
: c NDIF
- G fedede e e e e e e e e SET THE PLOT TITLE BASED ON THE =~ *skskksnskskskk
R e ek dede de e de e ek STATE SELECTED L koo
NN c
7;2 IF(STVAR.EQ.1)PNAMELl = 'X1 TIME RESPONSE'
A . IF(STVAR.EC.2)PNAMELl = 'X2 TIME RESPONSE'
S IF(STVAR.EQ.3)PNAMEl = 'X3 TIME RESPONSE'
IF(STVAR.EQ.4)PNAMELl = 'X4 TIME RESPONSE'
IF(STVAR.EQ.5)PNAME1l = 'X5 TIME RESPONSE'
i - STVAR.EQ.6)PNAMELl = 'X6 TIME RESPONSE' . -
N IF(STVAR.EQ.7)PNAMEL = 'X7 TIME RESPONSE' )
% F(STVAR.EQ.8)PNAMEl1 = 'X8 TIME RESPONSE'
R PNAMIL = 1&.

C
e e e e e e e sl e s e e e s e e e e she e e e e e ke e e e e vl Je v, . e vl e s e sk, s sk e e e sk e e s e sk e e e e ok e e e e e e e ok e e ek e e e

' Chhkkkkskkikkikikx CALL SUBROUTINE TO CALCULATE THE STATES  *¥%#kkidkidik
Crleededk ek e e e e ek e de ke Aok AR e T A e e e ok ke e ek A K ek Ak R ok e e sk sk ko ks e e sk e e ek e e

.'.\'. c

" c CALL STCALC(0,XKO,STVAR,SCPEEN)

Ty g**************** SKIP PLOTTING IF NO PLOT IS DESIRED hickdkkrhkrkk
e IFSSTPLOT .EQ. 3) GOTO1499

. IF(STPLOT .EJ. 2 .AND. PLOTCH .EQ. 0) GOTO1499

. W

}f c**********************************************************************
o e dede ek de e ek e e e ek e PLOT 88 GRAPHICS dee e e ek ek e ek
;ﬂ Qe ek e g e e e e v v e e e S o e sl e e e e ek 7k e e e sl sk ke e e vk e e e e e v e e e e e e ook e ok e e e o e e e e e e e de e ke e
)

o S**************** SET UP INITIAL PARAMETERS FOR THE A
o ) Chdkdddkdedrkddokk dkk sk STATE TRAJECTORY PLOT Fedekekkkkde ik

. 1055 BEGTIM = 0.0

. _ FINTIM = TFINAL

el NPTS = KFINAL

e DO 1050 = 1,7

! é ‘= INPUT(S &

o - — VN s(J) = ((FI M g TIM)/6.)*(J=1)

s c1060 CONTINUE

j Chekkkskdek ke dedksede PLOT THE STATE TRAJECTORY 7 Je e e e vl e e v e e
: c

oy IF(STVAR .58 ) PAUSE

w c CALL GRAPH(99,99,3)

?% g**************** IS A HARDCOPY OF THE PLOT DESIRED ?  *Nhkskikkkhikk
o WRITE (* 25953

m:% SR Q. R.EQ. '%R OR.ANSWER.EQ. 'y’ )CALL GRAPH(IOPORT MODEL,3)

e courfku: ) v

V3 1499 CONTINUE
B C1500 CONTINUE

ijé S************** PRINT OUT THE AVERAGE VALUES OF ALL STATES ***kkkkikkik

’ WRITE(*,2030

o WRITE(*, 2596
e WRITE(9,2596

o DO 1505 I=1,ORDERN

4 wnzras* 2597; I,AVG z ; AVGZi ; ;

< I WRITE(9,2597) I, AVG I,AVG2(I

o 1505 CONTINUE

. wa:rz(* 2030)

PAUSE
N
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g**************** IS ANOTHER RUN OF OPTCON DESIRED ? hkdkkkkkkkkhk

¢
WRITE(9,2030)
1510 warrz( *ésoo
RZAD S\N219 YANSWER
IF (ANSWER.EQ.'Y' .OR.ANSWER.E GOTO 1520
ég ngggg.z CIN'.OR.ANSWER.ES. B! GoTo 1530

g**************** PRINT MENU OF OPTIONS ************

1520 wnxms(** 2610)
,2070 ) TEMP
CALL OMPARE (TEMP,1,11,CODE, IGOOD)
IF(CODE. E? &GOTO 1420
~OPTION = IGO
IF(OPTION .LE. 4)THEN
IF (NINPTS oGL. 1)THEN
WRITE (* szoz
READ( sé070)

ENDIF
ENDIF
IF(OPPION .EQ.2 .OR. OPTION .EQ.3) LOOP = 1
IF(OPTION .EQ.8) GAINCH =1
;; RETIQNI.E .10 .AND. GAINCH .EQ.1) GAINCH =2
GOT0(20,230,100,310,390,560,620,1040,10,780,1510)OPTION
. GOTO 1520
c***********
1530 STOP
C***********

c

C : ’

c***********************************************************************
C Aok o oA e de ek FORMAT STATEMENTS dedkededede ek ok k ek k
c*********************************************************u*************

2000 FORHAT(/ 5X, | OPTCON minimizes the following cost'
function;' //,SX MIN ( T(N) * X(N) o,
-t_ Sum( X'' (k) * % l

+!' ®* R * U(k)))!', sx he outpu of the rogram is the!',
+' feedback gain’ ma rix, F transpose, (F'! ‘/.1 x 'which, when',
+' multiplie by the State Vector XS,',/ ﬁ ds a scalar' ,
+' control, (U). // sx 'The following recursive equations ',
+'were derived usi Xnam ¢ proygramming,' é
+'starting at the term nal time (N) and wor ing backwards:',//)

2010 FORMAT 8
Sk) = -(DEL"*P(k-l)*PHI)/(DEL"*P(k-l)*DEL + R)',3X,

+l
i Pgrw ;AT el TR

2018 F %({ x/'You may enter a system with eithei single or!',
+' mult plo control signals, ,/,9x,' If a s7stem with only one"
+! =sontrol signal is entered‘ o] 9 " then the optimal gains can
+! bo gmneratod as described', éx, above. These gains mag then',
lemented into the', /. x, state equations to obtain a',
+! time responso of the sy stem, ! you chooso to enter a',
+'! system with multiple control signall ,/ 9:, then ou must',
+! enter the feedback gains manual I the user defined',/,ox,
+' ains op tion exists for the s ingle control input system also.'
4 Firlt enter the prob em
+i 'ident fication ( NOT t¢ exceed 20 characters ).',//,
+10% 'PROBLEM ID ........‘, )

2020 FORMAT(A
2030 FORMAT ,/, kL -
2040 FORMAT /// 5%, 'OPTI CONTROL PROGRAM' ,/)

150




FORHAT{SX ,/.' PROBLEM IDENTIFICATION:',S5X,A20, )
FORMAT (5X //,‘ Select the type of printer "that you are’',

+! using

+! ( Answer r2)°',//,.
+10X,'1 EPSON or THINKJET',/

+10X '2) LASERJET',//,

+10X '"ANSWER. s 2 e 0c 00 %
FORMATESX //,' Enter the ORDER of the system (up to 8). ', )

TORMAT

FORMAT (S é{ ' Enter the NUMBER OF CONTROL INPUTS (up to 8). (
E...NO OPTIMAL GAINS will be generated if you enter e
+ 5 | ANSWER more then one control input',
x e e a8 0

FORMAT /. sx ' The NUMBER ob CONTROL INPUTS = ! 1&T
FORHAT /., SX,’ hny changes to NUHBER OF CONTROL INPUTS ?
wer -]
FCRMAL(SX,//, énter theYNUMBE of TINF INTERVALS (N) ‘over',”
hich the cost function o be
; minimlzed. (MUST NOT exceed 1000) L
FORHAT 10X,//.' Does the cost funcezon () include the State!
+' TRAJECTORY 'over ell stages ',/
Answer

+1ox 1) YES...Set g equal to the IgENTé4Y Matrix .',/
I}OX ,'2) tYES...Each 1agona1 element of Q will be entered!'

separate .
+10¥, ? NO?...Set Q equel to the 2Z2ERO Matrix .',//,
+10X 'ANSWE 26 0 06 ¢4 0000 0
FORMAT (9%, /é ' The states are weighted equally for the'
+' TRAJECTORY over all stages.'
FORMAT(QX,// ‘ Enter the alements of the Q matrix.' é

(Stace wethtlng matrix for TRAJECTORY over all stages)', /)
FORHA;(9X //., The state TRAJECTORY is not included in your',
+! cost functlo . )

FORMAT (6X, g(' ,I1,') =

FORMAT 54 8(¥8.3 The "‘trix "/5

FORMAT § Do you went to change an element of the matrix?',
+//,10 ‘YES...a SINGLE element. _
+1ox,'2§ S...the ENTIRE Matrix.'

+10X,'3) NO',//,

+10X 'ANSWERI.Q.'.OO"
FORMAT(/,5X.' Which element’ of the Matrix do you want to',
+4 Chan e ?V,/.
+5X, I is the ROW and J is the COLUMN,....enter I, J . )
58§5§¥§§?X ,//.,5%,' Any other changes? (Answer Yy or n) ', )
FORMAT(10 ,// ! Does the cost function J) include TERMINAL',
+! States ( Answei r3
+10X, TES. . SetH e uei fo the i NTITY Matrix .®
I}Ox l2 thS...E7ch diagonal element of H will be enfered'
separate .

+10X, A& NO?...Set H equal to the ZERO Matrix .',//,
+10x‘ swERIDCIOODCOOQC

T(9X,//,' All states are weighted equally for the'
+! TE IN stetes. )
FORMAT(9X,//,' Enter the elements of the H matrix,' ,/,
+' (State weiqhtin matrix for TERMINAL stetesi d/
FORMAT(9X,//, The TERMINAL states are not included in your',
+! cust function
FORMAT(6X, 'H(', Il VLU IL, Y)Yy s )
FORMAT(//,5X,' The H Matrix v /8
FORHAT /7, §X'' Enter the value of the scaler R 4
+5X Contrel input weightinq factor)',//.5X =? ', )
FORﬁAT ,5%,' The scalar R = 8.4

/ 5% ' Any changes to R’ ? (Answer yorn) ‘', )
FORMA /

+ If &ou want to read in the A and B matrices for a CONTINUOUS',
+! E system ,',/,4X,

l...-ll Illlll.l.ll.00.'0QOIbnlOncl.ll....lll.lllllgnter 0'

+//'4x 1f you want to enter the PHI and DEL matrices for a',
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+' DISCRETE TIME system,',/,b4X,
*' ...!Q.OII.I."I!..l.l..ll.!lllo..l.l....‘....lll'l..lnter 1"//'
SWER.OOIOOODIIOO.
2300 FORMAT /,5X," You will enter the A and B matrices. ',/,
........Is this correct ? !
2310 sonﬁnr(/ 5X,! You will enter the pui and DEL matrices. ',/,
..........Is this correct ?
2320 Fonﬁargsx,/£ ' Enter the elements of the plant matrix...A.',/)

2330 FORMAT(6X LI, 0,11, ,

2335 FORMAT(SX./,' No chenqes to A or B will be allowed because',/,
+ Si,' ou have entered a DISCRETE TIME system',(,
+ ENTER to continue. ... veees’,

2340 FORMAT 5he A Matrix (Plant Matrix)'

X
2350 FORMATiéé /' Enter the elements of the control distribution',

ix'.'sl'
2360 FORHAT GX, ,I1, /) )
2370 FORMAT éé ‘ The é Hetrix (Control Dietribution uetrix)‘,f$
2380 FORMAT /,'! Enter the SAMPLE INTERVAL..,..DT = ? )
sx /.' No changes to DT will be allowed beceuse'
you have entered a DISCRETE TIME system' ,/,

ENTE to co iu..ll.lllllll ) )
2390 FORMAT // SX ' The SAMPLE INTERVAL DT = ', F8,
2400 FORMAT éx, An changes to the SAMPLE INTERVAL ? (Answer!',

2410 Fo T§2§ éHI Erter the elements of the PHI matrix.',/)

2420 FORMAT &
2425 FORHAT 5X /( (] chengee to HI or DEL will be allowed because',/,
ou have ‘entered a CONTINUOUS TIME system',/,
+ 5 g 1t ENTER to continue...cieeone.t, )
2430 FORMAT éé Sx The PHI Matrix',/)
ét (Enter the elemente of the DEL matrix.' ,/)

2460 FORHA / 8%, The 6s£ Hatrix‘

2470 F / 5%, ORDER of tﬁ system = !

2475 roaunr ///,sx,' The NUMBER OF CONTROL INPUTé L, ',11)
2480 FORMAT £§/55¥g' T?e NUMBER of TIME INTERVALS = '.13,/)

- x
2500 FORMAT(//,' Minimum TERMINAL STATES Control')
2510 FORMAT(//,' Minimization over ALL STAGES')
2515 FORMAT(//.4X,' Do you went to see the gain schedule teble on',
+! the screen ?! / ,5X,! Answer yorn) ', )

2520 FORMAT(//,' NEG
+ ' rr%é' TIME t18,4

t
3 ' STEP',' INDEX',T18, i AS, 5}5 /1)
2525 FORMAT(//,', REAL!,J,
» TIME'' ' REAL',T20, 4;&4 ,8X),

2385 FORHAT

' INDEX TIME', 'T20,4(A4 8X),
2530 FORHAT(/, Optimum gains are reached efter ' I3,! stages.',
+/,' The ro ram is terminated eerly in order to',
even a d ivision b

2540 Fo T 14 2X T16Y4 FB 4, 24% /.,T16,4(F8.4,2X))
2541'FORMAT ! 2 14 2X ,T16,4(F8.4,2X
2545 F bo you went to see the gains plotted ?',

Knswer yor n) !
2546 FORﬁA ( Do you want to change the NUMBER OF STAGES ?',
+// sx Answer yormn)',)

/ ! Do you want to see a PHASE PLANE of X1 .vs.',
+' xz ? $x, (Ansver or n) !

Do you want to see a time response of your',
+! stem ? '(Answer yorn) !,
2560 FO T é4 " ?or how many seconds ? ! z

. //' The o timel ge ns are compu ed for only ',F8.4 ,
! gseconds.' Please enter a smaller number.' )
2565 FORHAT(SX,/' Entgf &he elements of the INITIAL STATE vector ',

2566 FORHAT 6X,'X',11,'(0) = ', )

2570 FORMAT(5X, /‘ énter e elements of the COMMAND INPUT vector-R.',/)
2580 FORMAT(&X, R( Ilf' =

2584 FORMAT(TS, N 14 'fN TIAL STATE',T3S,'COMMAND INPUT')

2585 FORMAT(T7, 11 T16,F9.4,137,79.4)
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2590 FORHAT(IO //.' Select a gain schedule...( Answer 1,2, or, 3)'.//,
Use 'STEADY STAT OPTIMAL gains ‘over all steps .',/
+1ox '2 Use DYNAMIC g
I%8§,'3 swgao STEADY S ATE USEﬁ DEFINED gains .',//,
2591 FORMAT //, 4x:"bB'Z6ﬁ'Qin§ 0 see the tim, response table on',

+! the scre ?! or .
2592 FORMAT sx g ﬁ4 oL GA§N Né‘ x{ { ))- ? oY)

FORMAT %,' The USER DEFINED cAtN uatrix 2/)
roanar 8{F7.4,1X

2593

2594 ,

2895 FORHAT ( 4x, Do You want a hnrdc;:z of this plot ? !,
2596

2597

FORHAT 6X,! ,// BX ¥ h%ERAGE VALUES OF ALL STATES',//)
FORHAT 6X,' Averaqo ‘Value of X'( N 12.4,
sﬁ,' Average Value of X Ii
! Haximum Value of X'.I1 = ,315.4,//5
2598 FORHA é/( Sx, Do you want to PLO&......', .
+//,10%,'1) 'ALL state trajectories.’,
+10%, ' 2 nly SELECTED state trajectoriea. i
+%8§ '3) NO state trnjectories. P
2599 FORHﬁT(// 5X, 'Do you want to see a PLOT for state X',I11,' ?2',/,
ax (Answer { or n)
2600 FORHAT(éé 4x This concludes he optimai control program'
+' (OPTCON). 'Do you want to run the program',

gain? g orn
2610 T( // W SELE ONE OF FOLLOWING OPTIONS:!,/,
i *en hange the NUMBER Of STAGES.:c.cscoecvseisceeesl!,/,
,/,' Change the TERMINAL state weighting matrix.....H ,/,

+1ox,/,' 3 Change the TRAJECTORY state weighting matrix... ,/,
+10X,/,' 4) Change the CONTROL weighting factor............
+10X,/,' 5) Change the present A and B matrices',/,

+10x,/,' 6 Chlnge the mLEI ERVAL:.-oooo-.cono--o.o-uDT ,/,
+10X,/,' 7) Change the present PHI and DEL matrices' 6

+10X,/,' 8 ,Change (or select) different FEEDBACK GAINS',/,
+10X,/,' 9) Input an entirely NEW SYSTEM',/,

+10X,/,' 10) NO CHANGES...RUN',/,

+10X 11) EXIT the ro ram',

o] /,
+10X, 'SELEC ION...% e a némber between 1 and 11 )......*,
2620 FORHAT(SX / ' No ¢ anqe to this parameter is allowed because'’,
ou have entered a MIMO system.',/,
+ 5x ' it ENTER tO Contim.IG. 4ass0sscacs )

END
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APPENDIX C
OPTCON SUBROUTINE LISTINGS

The following subroutines are written in MICROSOFT Fortran and are to be
used on an IBM compatible system. These subroutines are required. by the main
OPTCON program found in Appendix B and by the PLOT88 subroutine found in
Appendix D. A brief synopsis of the subroutine functions is given .below.

PHIDEL

- Convert the contipuous time A and B sy tfm matrices
to ﬁae corresponding dfscrete ame% am; matrgces.
PROD - Perform simple matrix rpultiplication of two matrices,
Maximum ﬁnens?on of the !r)natrgces is limited to eight.
SUM . rform simple matrix addition or subtractjon of two matrices.
h ax?mumuggnension o? the matr{ces ?s lim{ted to eight.
COMPARE - Test er input respanse to determine if the response
l]x.es mg : tgleprange%?'a owa%ﬁe integers. P
CLRSCR - A DOS command that allows the mogitor screen to be cleared
prior to the generation of a new graph.
GOTOXY - A DOS command that Positions the cursor to a designated
coordinate position on the monitor screen. .
STCALC - Calculates the time,res?onse of system by iterating the
iscrete state equations. .
$NOdebug : : : ,
C - LL63sub 12JULY87 i
C OK SDL-
c . NEW output format
C for states
c***********************v************************************************

CeRedededed sk ek dedede e e SUBROUTINES Fededesedede e de e e e
Cedededede R ek de e de e e e e e e e e e e e e e ek e e R e e 5k e e e e e s e e e e e e e o e e de ek ek

¢
¢
c SUBROUTINE PHIDEL(T,ORDERN,M)
COMMON /BLK1/ A,B,PHI,DEL
INTEGER*2 ORDERN, ,J, RFLA(I'i

E
REAL*4 A(8,8).B(8.2),PHI(8,8) ,DEL(8,2), :
psnﬁ,a&faﬁn(a,a‘),Nzxmufa,a?,mno(a,a),
TRAT10,ERROR,K

++

305-7
T*T/2.

DO 1 I = 1,0RDERN
DO 1 J = 1,0RDERN
TERM(I,J)= A§I,J) * TRATIO
IF(I .£0 J'l) HEN
PSIT(I,Y) = T + TERM(I,I)
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LSE
PSIT(I,J) = TERM(I,J)
1 CONTINUE

K =2,

2K=K+1,
TRATIO = T/K
DO31I=], ORDERN
03J s
ARATIO(I J)- A(I J) * TRATIO
3 CONTINUE

GALL PROD(TERM,ARATIO,ORDERN,ORDERN,ORDERN,NEXTRN) . -

DO4I=l, oannnu
'
:r(aas Ntxran %} .es znaoa) THEN
G = ERFI

ND
(1 J) = NEXTRM(I,J)
4 cour:nuz

nn

xr(znrnnc .GT. O)THEN
DOS1=1, o ERN
DOS I
PSIT(I, Jﬁ- rznu(: J) + PSIT(I,J)
5  CONTINUE

ERFLAG = 0
GOTO 2

c******ENBIE;***** NOTE THE DUAL USE OF 'TERM' HERE  Rdkdvddededeseskssesk

CALL PROD(A PSIT ORDERN,ORDERN,ORDERN,TERM)
Do xf I= 1,6RDERN

OIF(I ' ORDERN
E& I) = 1 + TERM(I,I)

ELSE
- PHI(I,J) = TERM(I,J)
ENDIF

6 CONTINUE
CALL PROD(PSIT,B,ORDERN,ORDERN,M,DEL)

RETURN
END

c

(g

e v e Ak v A ek e e s e de e Je e e e vl e e s e e e s e e s e e e e e e v e e e e e e e e e 7 e v e e e e e e v e e vl e v s ok e ok e ok

SUBROUTINE SUM(M1,M2,0PER,N,M,MSUM)

ggggcgn*z gi(é°§§nnz(a 8) ,MSUM(8,8)

DO 1 I=1,N
DO 1 J=l M
1 MSUM(I,J)=0.0

g***************** DO YOU WANT TO ADD OR SUBTRACT 7  *kkdrksdseddedkderes
~ .

0o anaan

(]

- OPER) 2.2,3
C*********** ek SUBTRACT deesededede e de ek ek e e
2 DO 20 I=1,N
020 J'= 1,M

MSUM(I,J) = M1(1,J) - MZ(I,J’
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20 CONTINUE

GOTO 40
CrRRk Rk deskvestde i e dede e ADD e vk vk ok sk e e e e
3 DO 30 I =1N
030 J'=1,M
MSUM(I,J) = M1(I,J) + M2(I,J)
30 CONTINUE
40 RETURN
END
C
g :
CAsedrk ek e e dede s e e s e s e s vl v e e e s ke e e e ke s s e sk ke v sk de sk e e e e e e e e ek e vk e

SUBROUTINE PROD (M1,M2,O0RDERN,M,L,MPROD)

- INTEGER*2 ORDERN M L : . =
REAL*¢ Hlég 8, nz(a 85 MPROD(8, 8)
DO 1 Iaxloanz

01 J=1,L
1 MPROD(I,J)=0.0
DO 2 I=1,O0RDERN
DO 2 'J=1,1 e

DO 2K =
2 %&FO I,J} = MPROD(I,J) + M1(I,K) * M2(K,J)
END

e e 7 e e s e Y e v v vl e e e v v o e A e e v v e e e e v e v e e e e v e e e e vk v ok ok T e ste v v 2k e e e v v sk s e e e v ok e e e e e e e K

SUBROUTINE COMPARE (TEMP,VALMIN,VALMAX,CODE,IGOOD)

INTEGER*2  IGOOD,CODE,VALMAX,VALMIN
CHARACTER*2 TEMP

IGOOD = =1 \
IF(TEMP.EQ.'0')IGOOD=0
IF(TEMP.EQ.'l')IGOOD=1
IF(TEMP.EQ.'2')IGOQD=2
«'3Y)IGOOD=3
.'4')IGO0D=4
.'5')IGOOD=5
.'6')IGOOD=6
«'71)1GOOD=7
.'8')I1GO0D=8
«'9')1GO0OD=9
.'10')IGOOD=10
IF(TEMP.EQ. '11' ) IGOOD=11

IF(IGOOD.E%;-I .OR. IGOOD.GT.VALMAX .OR. IGOOD.LT.VALMIN) THEN
CODE =

ELSE
CODE = 1
ENDIF
RETURN
END

0O NQnnn

[ o]
g
o
E
251 01 13 x4 £ 0 e 33 129

T e e e e e s e e s e 2 s e e i e e e 7 Y e e e v ok e e e e vk sk o 7 e e v i e e e e e v e e e e 3k e o ke e T e e ok e e e e e v o e e e ok ok ok Ao

(oleTeTele!

SUBROUTINE CLRSCR

*
égégggggégé ég(4 Cg § €2,1C(2)) 3 IC(3)) (C4q, IC(4))
B (36010 fc2 1eh2)) (o3, 1c

>
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s

.

C ok Writo 51c| e Code to Displly ke
C€l,C2,C3,C4
1 FORHAT(IX 4Al )

RETURN
END

e e e 2k vl 2 v vl e gk e 7 e v v e v e e e e e e e ol e e e e e e e o e e e e o sk ke e i ok ek o e o ok e ok e e ok e e e e e e e e e ve e e e e e ke

SUBROUTINE GOTOXY(ROW,COLUMN)
kkkkik Pogition Cursor by Row,Column ki

INTEGER*2 IC aow COLUMN, L
*cnanacrxa §,cs,Lcls) ‘ : ~

EQUIVALENCE ZCI IC(lg{ (CZ I1C(2)),(CS,10(3)),(c8,1C(4)),
C/1641B, GLEB 16#3B8,16466/

anan 0onononon

DATA
L=10000+100*ROW+COLUMN

o}
C *%% Write Escugp Codes to a Character Buffer *i#*
WRITE (CB
2 FORMAT(I

C Fkk Write Esca e Codes Displa Rk
WRITE(*,3 Cl ,LC(Z),LC( ,C5,LC(4),LC(5),c8
3 F!'(OERHAT 'r(1x . )

END

e e i 2 o e e e sl e o s e e e e s o e e e e s s e e e s e i s e A e i s e i i e sh sk e sh vk e sk vk v e vk v e v e e ok e v vl e e e e ok e A

SUBROUTINE STCALC(PHASE, XRO STVAR ,SCREEN)

*%* CALCULATE THE STATES ITERATIVELY k%

*h% X(k+l) = PHI * X(k) + DEL * U(k) ***

COMMON /BLK1/ A,B,PHI,DEL

COMMON /BLK3/ vfruz VTIMSS VY, VYSS, VXXSS, VXYSS

COMMON /BLRA/ RFINAL NSTAGE ,NSTP1, 6RDERN GNSKED, USERGN, FNEG,

A UT,BT,AVG,AVG2 , MAXVAL NINPTS

INTEGER*2 RFINAL NSTAGE ,NSTP1, oanth GNSKED, STVAR, SCREEN,

REAL*4 H%F% é(azg N%ﬁ%&% sn(a 2 VTIHE(IO
véxﬁsgé g géé S N30T58 1),
DT, PHI

g gﬂ é {8, 6ELno 8 aékyow
Nﬁs 1 ,AVG(S) Avéz(8§ STSOM, s%éuuz MARUAL (3 ),
c ~ USERGN 8,8
ChdekRkhkdhkhrhkik RE-INITIALIZE THE STATE VECTOR Fekkdeskokkkkkkk
DO 5 J = 1,0RDERN
1) = XKO(J,1)
" 5 CONTI
Cheedesedesessededesk de sk e RE-INITIALIZE THE AVERAGING SUMS dededekkhdekdkkkk
CRdededesededededek kokkkdk AND MAXIMUM VALUE STATE VECTOR kdkekdedkhkkkik
c
STSUM = 0.0
STSUM2 = 0.0
c MAXVAL(STVAR) = 0.0 o
Chdkhkikihkrhir LOOP TO ITERATIVELY CALCULATE THE STATES **kkdiiocsxkk

nNnaana aannn

+t+++ + +
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DO 70 K = 1,KFINAL

KPRIME = NSTP1 - K
TIME = K * DT
IF (PHASE .EQ. 1) THEN
VY(K) = xxgz,lg
VTIME(K) = XK(1,1
ELSE
(K) = XR(STVAR,1)
ME(K) = TIME

VT1
Chkkkkkkkikkkkxkk  SUM FOR COMPUTING AVERAGE STATE VALUES  *kkdkdidkikdkiik
STSUtz = STSuz + X%é?§¥%§ﬁ12> * XK(STVAR,1))
= + ,
C**************Qa;s SEARCHtggR MA&IMUH VALbE OF THE STATE = “kikkikkkkik
IF( ABS( XK(STVAR,1) ) .GT. ABS( MAXVAL(STVAR) ))
MAXVAL(STVAR) = XK(STVAR,1) . ) -

+
c - ENDIF
Chkdedeksokdkdkkddedxx  LOOP TO SELECT THE PROPER FEEDBACK GAIN ki
CRKdskdedek Kk ddkdkkk Kk ELEMENTS FOR THIS TIME STEP Kk Fedkk ki
c
DO 40 J = 1,0RDERN
GOTO(10,20,35)GNSKED
C e sk ok ok e e USE STEADY STATE GAINS (GNSKED=1 )%k
10 RogFéé,g% = FNEG(NSTAGE,J)
C***************j) USE DYNAMIC GAINS (GNSKED=2 ) **kdkdkekkkikkk
20 IF(K .LE. NSTAGE) THEN
- ROWF(1,J) = FNEG(KPRIME,J)
IFBOWF(I,J) = 0.0
30 CONTINUE
CFedede e oo dodedededhe ek e e e USER DEFINED GAINS (GNSKED=3 ) *#kkkikikkkkk
35 CONTINUE »
40 CONTINUE
g**************** ’ - PAD THE DEL AND ROWF MATRICES ededede ek Jeok Fe K e
(e e e e e sk ek e e e e e WITH ZEROS Fode e Fe e s de e e
g**************** IN ORDER TO MULTIPLY PROPERLY IN PROD  *kkidkikkik
NINPP1 = NINPTS + 1
-— DO 50 I = 1,0RDERN
DO 50 J = NINPP1l,ORDERN
" DEL(I,J) = 0.0
ROWF(J,I) = 0.0
c 50 . CONTINUE
(e e s s e e T e e e e e Je v e e e e e e e e e e T e e v e Fe e e e e T Fe e s e e e e e e e vk e o e e e e e e e ke e dede e e ek e ek
Ok dedededeodededededede e e Fe CALCULATE THE NEXT STATE xik+1l Fede e de oo e o ek ko
OkkFedddodedek e deskdedek ke de sk e e s e e o de ek dede e e de sk ke e dede e e e e e de e e e e e de e e e e e e e ek
c
=1 .
) IFiGNSKED .NE. 3) THEN
Chkdkkickkkkhhkkxkk - UYSING OPTIMAL GAIN SCHEDULE dededeFedekdedekdokok
LSE:CALL PROD(DEL,ROWF ,ORDERN,, ORDERN,, ORDERN,, DELROW)
C***********E**** " USING USER DEFINED GAIN MATRIX Feeskedk ook e ek
ENDI(%_M.I.PROD(DEL,USERGN,ORDERN,ORDERN-,ORDERN,DELROW)
OPER = 1

CALL SUM(PHI,DELROW,OPER,ORDERN,ORDERN,PHIEQ)
CALL PRODsPHIEg,XK,ORDERN,ORDERN,H,PHIEQX)
ggék gRgD DELROW, INPUT ,ORDERN, ORDERN,M, DELINP)

CALL SUM(PHIEQX DELINP, OPER ORDERN M XKPll
Rtk dedek Rk Rk xR K kg kR R ek e ek ek ek ek e ek e dek ek de e ded ke de ok e ok

S**************** NEXT 29 LINES ARE TEST LINES TO VERIFY  Hdhdckikkdokkk
Chiddkikddkhkkikk PROPER CALCULATION OF THE STATES Fekkkdkkkkkkk
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g**************** FOR A SECOND ORDER OPTIMAL EXAMPLE e e e e ok e e e e vk e e
¢ WRITE(*,2614) K

¢ s

¢ wa:ra(* ZéZO)DEL(I 1),ROWF(1,1), (DELROW(I, J) Jal ORDERN)
C1041 CONTINUE

g e

¢ wn:rs 2é30) PHI( 1,J),J=1 ,ORDERN), (DELROW(I,J),

51042+ CONTINVE ( ¢ o& RN), (PHIEQ(% §) J=l oabz&u)

¢ NEITE{3-2635) ,

¢ wazrz(* 2640)(95150(: J),J=1,0RDERN), XK(I,1), PHIEQX(I 1)
€1043 .. CONTINUE

g ggrrg 2 12645

¢ wnrrn(* zéso>pu:zgx(1 1),DELINP(I,1),XKP1(I,1)

C1044 courxnus

C2614 F TIME srsp = 1,13,/)

C2615 FORHAT 4 r1o ' DEL',T22, F TRAN',T44, 'DELROW')

€2620 FORMAT(TS rld 4,120, s1o 4 T35 2(F10.4

C2625 FORMAT(/,t10,' # HI' "' "DELROW ',T66,'PHIEQ ')

C2630 FORMAT 2Zr1o é(slb 4? 8X,2(F1b.4

€2635 FORMAT(/ 110,- ', 151, ' PHIEQX"')

€2640 FORMAT 2(310.4) 6 éX‘Fl .4)

C2645 FORMAT 4sr%of-oﬁuré X, 16x DELINP ',12X,' XKP1 ')

******gmz ****‘*i******ll*******************************************
Chkkkkkdhhs NEXT 24 LINES ARE TEST LINES TO VERIFY dedddekhrk
Cheiddeddkdohiddk PROPER CALCULATION OF THE STATES o deddedokokdk
Chkkdckikkkik  FOR A FOURTH ORDER USER DEFINED GAINS EXAMPLE ikikksk
C***************************************** ¢ e T e v e e e e e ke ofe e 2 e Fe e e e ok sk ok e A ke e e
€ ,
¢ WRITE(9,2614) K
c . WRITE 9 2615
¢ - DO 1041°T = 1,O0RDERN
¢ WRITE(9,2620) (PHI(I,J),J=1,0RDERN), (DEL(I,J),J=1,NINPTS)
€1041 CONTINUE

WRITE(9, zszsl
c DO 1042'T = 1,ORDERN
c - WRITE(S, zéso)gnsnnow§z,Jg ,J=1, onnzan; ,DELINP(I,1),
c + USERGN(J,1),J=1 NINPTS
oz S 2635
c DO 1043'T = 1,ORDERN
¢ wnxrz(e,zé40)§§gzzg(: J%kaal ORDERN) , PHIEQX(I,1),
51043+ NUE
C2614 F r:uz srzp = !,I3 /)
C2615 FORHAT 4 TIO ' pux' EL')
€2620 FORMAT(TS, 4 357 st 2(37
i SR )] i L . e
€2635 F 4 z§ TSi 'paizg 453 'kxp ,T74, 'XK')
82640 FORHAT § 4(#7 4 2xY, 150 T60,F7.4,770,F7.4)
C**************** PRINT OUT THE STATE TABLE e e e e e o e 7 ok e ok e
c**************** ONLY ONCE ke e v vt ke oe T e e e de A
¢

IF(PHASE .NE. 1
IF(STVAR .EQ.

THEN
F(SCREEN .EQ. 1. ) THEN
& zﬁ%ﬁ#&z(* 2670)J TIME (XK(I,1),T=1,ORDERN)

WRITE(* 2671)K,TIME, (XK(I,1),I=1,0RDERN)
ENDIF
ENDIF
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IF(ORDERN ,GT. 4!2 THEN
SWRITE(9,267O) ,TIME, (XK(I,1),I=1,O0RDERN)

E
Emlv%nxrs(‘a,zsn)!(,nm. (XK(1,1),I=1,0RDERN)
2670 ronnari' ',14,77,F8.4,T15,4 F1o.4,2x;$/,r15,4(r10.4,2x))

2671 FORMAT(' ',I4,T7,F8.4,T15,4(F10.4,2X
ENDIF ,
ENDIF
g**************** GET READY FOR THE NEXT ITERATION Fekdededek ok

c
DO 60 I = 1,ORDERN
XK(I,1J = XKP1(I,1)
60 CONTINUE
70 _CONTINUE -

c - '
Fedededeiede sk stk de dedededededesedede ke e e
8**************** c“gg‘{ﬁ‘fg&g&%ﬁ%“gﬁ %I?%AEEATE KTk e

¢
IF(STVAR .NE. O)THEN

Avcésrnga a STSUM/KFINAL

DIAFVG (STVAR) = STSUM2/KFINAL

RETURN
END
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APPENDIX D
: PLOTS8 GRAPHICS SUBROUTINE LISTING

The following code is written in MICROSOFT Fortran and is intended to be
used on an IBM compatible system. This graphics subroutine must be linked with the
- " two program segments found in Appendicss B and C. In addition, the Fortran, Math
. and PLOTSS libraries must be linked.

. c LL63GR oK SOL
g*******************************k************************‘l}t’%z***********
Cededededde e dede v e e e SUBROUTINES Fededededede dok e ek K

»‘(5'. C ke e e e vk s e e e e e sl e e s o s e e s e sk ok e e ok ok she e e e sl ol sl e e e e she sk o e e e sk 5k o sk ke e e e e e e e e e e e e e T e e e e

a ;

N ¢

e c SUBROJTINE GRAPH(IOPORT ,MODEL ,PLTYPE)

, IMPLICIT REAL*4 (A-Z)

g ,COMMON /BLK2/ BEGTIM FINTIM NPTS,

x AML , YNAML , PNAHIL /PNAM2L , (PNAISL

s ¥ commMoN /BLK3/ vrxnz VTIMSS VY, VYSS,VXXSS VXiss

il COMMON (BLKS/ XNAME . YNAME , BNAME1 , PNAME2 , BNAME

o , INTEGEF NS § iopoar MODEL 4 kNAnL AHL

: REAL*4 vr:uz 1ooz) g XAXL YAXL ,VTIMSS(9),V¥Ss(9),

. XORGN, YORGN

:"‘g‘\ XHI YLO YHI

D ¥ CHARACTER*30 XNAMS 7K

. o - -CHARACTER*3] PNAHEi PNAME2

c******iﬂyggﬂ‘*'m 99) mSEND TO MONITOR dededede de e dek e de g ke

P! CALL CLRSCR
s XORGN = 1.50
YORGN = 0.80

c******f&ggﬁ****** SEND TO PLOTTER Fedo sk de Te ke e e ke e e ek
o ' A0RGN = 3,20 :
YORGN = 1.76
: ENDIF
. 10 CALL GOTOXY(10,25)
¥ | c WRITE(*,*) 'Calculatinq Plotting Data'

c*******f**fﬂff*'” I)PLOTTING THE GAINS dedeesk dede e ek dedek e
5.0

0.25
'géSCRETE REAL TIME INDEX (k)'
'ggIN TRAJECTORY'

l 1

EE

C******Eﬁ*fﬂ*ﬂi‘?‘f’ E 'E&OT ING ‘I'HE PHASE PLANE dedededefededeh vk dededek
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XAXL

XOFF

B XKNAME
N KNAML
i YNAME
x YNAML
BNAME1
PNAM1L

4.0
0.29
'gl STATE'
'§2 STATE'
é¥1 vs. X2 PHASE PLANE'
XORGN XORGN + 0.65
s c******E}e‘EE******* PLOTTING THE TIME RESPONSE dodek dedede ks ke dedeok
e XAXL '

N XOFF
8 KNAME

NO
wn

EAL TIME (sec)'
TATE TRAJECTORY'

-1 -OWm
w

R
1
S
1

Eee

N0

0
3
*

Rekk CHARHEBT TITLE LOCATIONS Jede ek dedede e de Aok e
ﬁogz + (XAXL-PNAMIL*ASPRAT*CHARHT)/2.

ong 4 (XAXL-PNAM2L*ASPRAT*CHRHT2)/2.
§OFF + (XAXL-PNAM3L*ASPRAT*CHRHT2)/2.
ifingNAH1L§

[(=l=TeT 3

CHRH
CHRAR AR A KK e s ek

PTX1
PTY1
PTX2
PTY2
PTX3
PTY3
NCHAR1

. e et T
LT e A
el -t

. NCHARZ = ifix({PNAM2L
: NCHAR3 = ifix(PNAM3L

" CALL PLOTSéO IOPORT ,MODEL)
CALL FACTO 21.00
CALL ASPECT(ASPRAT)

CALL SCALE(VY,YAXL NPTS 1)
IF (PLTYPE .EQ. 1) THEN
C This scalin qgglies when the X axis represents DISCRETE TIME
CALL SCAL IME , XAXL
CALL STAXIS 15,.20,.1é,.oaé
T ELSEIF (PLTYPE . EQ. 2) THEN
C This scalin f lies when the X axis represents a STATE
XLO = VTIME

PHROUBHDUO XD UN

0

.

o)

S N

-
e

XHI = VTIHE 1
YLO = Ve(l
YHI = VY 1

DO 15 TS
v*fm ga

b L T

I VTI
. IF ( VTIME(J VTl
R IF vY(J

. IF vY(J

15 CONTINUE

. XRANGE = XHI - XLO
¥ YRANGE = YHI - YLO

- IF( YRANGE .LT. XRANGE ? THEN

g «GT. XHI i KHI

§
PREE

K, - vvé Tse1 = YLO - KAAXL*INCRHT YRANGE)/2.)
K : VTIME (NPTS+1) = XLO =~
Q" = XRANGE/(XAXL-I )
sts
. = YRANGE/YAXL
i VT THE NPTS+1) = XLO § XAXL*INCRMT - XRANGF)/2.)
¢ VY(NPIS+l) ' = YLO - INCRMT/2.
" = YRANGE/(YAXL-1.)
ENDIF
! VY§NPTs+zg = INCRMT
VTIME (NPTS+2) = INCRMT
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- ~CALL SYMBOL

SEFALL STAXI1S(.15,.20,.12,.080,2)

This scalin plies when the X axis represents REAL TIME

VTIME (NPT +1§ = BEGTI
VTIME (NPTS+2) = (VTIMEéNPTS&-VTIME(NPTS+1))/XAXL
CALL STAXIS(.15,.20,.1

EINDIF

FIRSTX = VTIME(NPTS+1

DELTAX = VTIME(NPTS+2

LASTX = FIRSTX + DELTAX*XAXL

FIRSTY = VY(NPTS+1

DELTAY = VY(NPTS+2

LASTY = FIRSTY + DELTAY*YAXL

IF (PLIYPE .EQ. 1 .OR. PLIYPE .EQ. 3) THEN
.. VTIMSS a; BEGTINM . -
VTIHSS(9 (FINTIN - BEGTIM)/XAXL
. .

D0 20 J = 1,7
VYSSéJ) = 0.0
VTIM S§J) = ((éLASTX - FIRSTX)/6.) * (J-1) ) + FIRSTX
VXXSS ; = Q.
VXYSS(J) = (((LASTY - FIRSTY)/6.) * (J-1) )} + FIRSTY
CONTINUE
VTIMSS(8) = FIRSTX
VTIMSS(9) = DELTAX
VXXSS = FIRSTX
VXXSS(9) = DELTAX
VXYSS(8) = FIRSTY
VXYSS(9) = DELTAY
ENDIF
VYSJSG = FIRSTY
VYSS(9 = DELTAY
CALL PLOT (XORGN YORGN -13)

CALL PLOT(XAXL,0.0

CALL PLOT(XAXI., YAxt

CALL PLOT o 00 YAXL,-

CALL AXIS(C.0,0.0 XNAMIL, , XAXL,0.,FIRSTX,DELTAX)
CALL STAX s( is,.éo,.lz,.oao i%n

CALL AXIS(0 YNAME L,¥AXL,90. FIRSTY,DELTAY)
CALL SYMBOL ﬁrxi PTY1, CHARHT ENAME CHAR1
CALL SYMBOL(PTXZ PTY2' CHRHTZ2,PNAMEZ2,0..NCHARZ
'PTX3 ,PTY3, CHRHTZ , PNAME3,0. ,NCHAR3

CALL LINE(VTIME,VY NPTS,1,0,0)
IF( FIRSTY.LE.O )THEN
ENDLE IF( LASTY.GE.O )CALL CURVE(VTIMSS,Vi5S,7,-0.1)

IF(PLTYP .F %g a

93

EN;I LASTX.GE O )CALL CURVE(VXXSS VKYss,7,-0.1)
ENDIF
CALL PLOT(0.,0.,999)
RETURN

END
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